Causal Estimates of Neighborhood Poverty on Health and Mortality
社区贫困对健康和死亡率的因果估计
基本信息
- 批准号:7658417
- 负责人:
- 金额:$ 19.55万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-09-30 至 2011-08-31
- 项目状态:已结题
- 来源:
- 关键词:AccountingAddressAffectAttentionBehaviorCharacteristicsCritical PathwaysDataEconomically Deprived PopulationEducationEmploymentEmployment StatusEnvironmentGoalsHealthHealth PolicyHealth StatusHealth behaviorHeterogeneityIncomeIndividualKnowledgeLeadLifeLinkLiteratureMarital StatusMarriageMediatingMediator of activation proteinMethodologyModelingNeighborhoodsObservational StudyOutcomePatient Self-ReportPlaguePovertyPublic HealthRaceRelianceResearchResearch PersonnelRiskServicesSmokingSorting - Cell MovementSourceStatistical MethodsStructural ModelsTimeWorkanalytical methodbasedesignhazardhealth disparitymortalitynovelpolicy implicationpublic health relevancesocialsocioeconomics
项目摘要
DESCRIPTION (provided by applicant): The disparities in the distribution of goods and services, and hazards and opportunities across space are increasing, underscoring the growing connection between place and health. Although ample evidence confirms that living in an economically disadvantaged neighborhood is associated with adverse health outcomes, the reliance on cross-sectional data and inadequate attention to two main sources of bias make causal inferences problematic. Residents tend to sort themselves into different types of neighborhoods based on a multitude of characteristics. Not accounting for all characteristics that are correlated to both the outcome and neighborhood context would likely lead to over-estimations of neighborhood effects. Because regression models cannot possibly account for all relevant factors, the strong possibility of unobserved heterogeneity make neighborhood effect studies open to criticisms of omitted variable bias. Yet, at the same time, neighborhood effect studies are also just as likely to be susceptible to bias due to over- adjustment. Many factors that are controlled for in neighborhood effect models, such as educational attainment, income, and employment, may arguably have been influenced by past neighborhood context. Adjusting for these factors eliminate possible critical pathways through which neighborhoods affect health, likely yielding overly conservative estimates of neighborhood effects. These two sources of bias, working in opposing directions, have plagued extant neighborhood-health research; consequently, results from current research yield tenuous and ambiguous inferences. This proposed project will use novel analytical methods and longitudinal data from an existing observational study to address the two major limitations described above and recover causal estimates of neighborhood poverty on self-rated health and mortality. We will 1) use marginal structural modeling to appropriately adjust for covariates that are simultaneously confounders as well as mediators and 2) conduct a sensitivity analysis to determine the robustness of the neighborhood effect findings to unobserved heterogeneity. Applying this combined methodology to neighborhood-health research has the potential to significantly advance our knowledge of the relationship between place and health, yielding far reaching policy implications. PUBLIC HEALTH RELEVANCE: Relevance Robust findings of a causal connection between residential context and health can help health policymakers judge the extent and magnitude of neighborhood impacts on health and guide public health policies. Evidence that the social and structural environment influences life-chances, and ultimately health outcomes, suggests that health policy, traditionally targeted at the individual level with little regard to neighborhood context, should consider underlying constraints or opportunities present in the residential environment in designing and implementing the most effective and efficient public health policies.
描述(由申请人提供):商品和服务分配的差异以及跨空间的危险和机遇正在增加,凸显了地方与健康之间日益密切的联系。尽管充足的证据证实,生活在经济贫困的社区与不良的健康结果有关,但对横截面数据的依赖以及对两个主要偏见来源的关注不足使得因果推论存在问题。居民倾向于根据多种特征将自己分为不同类型的社区。不考虑与结果和邻里环境相关的所有特征可能会导致对邻里效应的高估。由于回归模型不可能解释所有相关因素,因此未观察到的异质性的可能性很大,使得邻域效应研究容易受到遗漏变量偏差的批评。然而,与此同时,邻里效应研究也同样可能因过度调整而受到偏差的影响。邻里效应模型中控制的许多因素,例如教育程度、收入和就业,可能受到过去邻里环境的影响。对这些因素进行调整,消除了社区影响健康的可能关键途径,可能会产生对社区影响过于保守的估计。这两种相反方向的偏见来源一直困扰着现有的社区健康研究。因此,当前的研究结果得出了脆弱且含糊的推论。该拟议项目将使用新颖的分析方法和现有观察研究的纵向数据来解决上述两个主要局限性,并恢复社区贫困对自评健康和死亡率的因果估计。我们将 1) 使用边际结构模型来适当调整同时作为混杂因素和中介因素的协变量,2) 进行敏感性分析,以确定邻域效应结果对未观察到的异质性的稳健性。将这种综合方法应用于社区健康研究有可能显着提高我们对地方与健康之间关系的认识,产生深远的政策影响。公共卫生相关性:相关性居住环境与健康之间因果关系的可靠发现可以帮助卫生决策者判断社区对健康影响的程度和程度,并指导公共卫生政策。有证据表明,社会和结构环境影响生命机会,并最终影响健康结果,这表明传统上针对个人层面的卫生政策,很少考虑邻里环境,在设计和实施时应考虑居住环境中存在的潜在限制或机会最有效和最高效的公共卫生政策。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
D. PHUONG DO其他文献
D. PHUONG DO的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('D. PHUONG DO', 18)}}的其他基金
Impact of individual- and neighborhood-level risk factors on brain responses to smoking cues among and across racial groups
个人和社区层面的危险因素对不同种族群体中吸烟线索的大脑反应的影响
- 批准号:
10664822 - 财政年份:2022
- 资助金额:
$ 19.55万 - 项目类别:
Impact of individual- and neighborhood-level risk factors on brain responses to smoking cues among and across racial groups
个人和社区层面的危险因素对不同种族群体中吸烟线索的大脑反应的影响
- 批准号:
10352840 - 财政年份:2022
- 资助金额:
$ 19.55万 - 项目类别:
Causal Estimates of Neighborhood Poverty on Health and Mortality
社区贫困对健康和死亡率的因果估计
- 批准号:
7943072 - 财政年份:2009
- 资助金额:
$ 19.55万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Climate Change Effects on Pregnancy via a Traditional Food
气候变化通过传统食物对怀孕的影响
- 批准号:
10822202 - 财政年份:2024
- 资助金额:
$ 19.55万 - 项目类别:
NeuroMAP Phase II - Recruitment and Assessment Core
NeuroMAP 第二阶段 - 招募和评估核心
- 批准号:
10711136 - 财政年份:2023
- 资助金额:
$ 19.55万 - 项目类别:
Genetic and Environmental Influences on Individual Sweet Preference Across Ancestry Groups in the U.S.
遗传和环境对美国不同血统群体个体甜味偏好的影响
- 批准号:
10709381 - 财政年份:2023
- 资助金额:
$ 19.55万 - 项目类别:
A Next Generation Data Infrastructure to Understand Disparities across the Life Course
下一代数据基础设施可了解整个生命周期的差异
- 批准号:
10588092 - 财政年份:2023
- 资助金额:
$ 19.55万 - 项目类别:
Substance use treatment and county incarceration: Reducing inequities in substance use treatment need, availability, use, and outcomes
药物滥用治疗和县监禁:减少药物滥用治疗需求、可用性、使用和结果方面的不平等
- 批准号:
10585508 - 财政年份:2023
- 资助金额:
$ 19.55万 - 项目类别: