Identification of a dopamine circuit mediating day eating and diet-induced obesity in mice
介导小鼠日间饮食和饮食诱导肥胖的多巴胺回路的鉴定
基本信息
- 批准号:10730567
- 负责人:
- 金额:$ 44.1万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:AblationAcuteAdultAmericanAnatomyAnimal ModelAutomobile DrivingBiological RhythmBody Weight decreasedBody fatBrainCaloriesCardiovascular DiseasesCaringCircadian DysregulationCircadian RhythmsConsumptionDiabetes MellitusDietDiseaseDopamineDopamine ReceptorEatingEating BehaviorEnergy IntakeEnergy consumptionFOXP2 geneFatty acid glycerol estersFeeding PatternsFeeding behaviorsFoodGeneticGenetic IdentityHealthHumanHungerHyperphagiaHypothalamic structureIncentivesIndividualInjectionsInterventionKnockout MiceKnowledgeLinkMalignant NeoplasmsMapsMediatingMediatorMedicalMetabolic DiseasesMetabolic syndromeMetabolismMidbrain structureMotivationMusNeuronsNon-Insulin-Dependent Diabetes MellitusNucleus AccumbensObesityObesity EpidemicOverweightPathologicPathway interactionsPhasePhenotypePhysiologicalPopulationPredispositionProductionResistanceResting PhaseRetrievalRewardsRiskSignal TransductionSiteSyndromeSystemTestingTherapeuticTimeTransgenic MiceTyrosine 3-MonooxygenaseUnited StatesVentral Tegmental AreaViralWeight GainWorkcalbindincircadiancircadian pacemakercircadian regulationconditional knockoutcostdesigner receptors exclusively activated by designer drugsdiet-induced obesitydopaminergic neuronexperimental studyfeedingfood consumptionhedonichuman modelinnovationmouse geneticsmutantneural circuitnovelpleasurepreventrecombinaseresponserestorationretrograde transportreward circuitrysensory integrationsugarsuprachiasmatic nucleustooltrend
项目摘要
Project Summary
Excess body fat significantly increases the risk for a range of maladies including diabetes,
cancer, and cardiovascular diseases. An estimated 45 million adult Americans go on diets and
spend over $30 billion on weight loss products each year. Most of these interventions fail, leaving
individuals overweight and susceptible to metabolic disorders like type 2 diabetes. This trend is
likely due to the easy availability of palatable, energy-rich foods which incentivizes food
consumption for pleasure regardless of the energy need (hedonic feeding). Dopaminergic neurons
of the ventral tegmental area (VTA) compute the potential value of food reward and release
dopamine (DA) to tune the activity of downstream targets. One of the results of this reward
computation is the encoding of the necessary drive for retrieval and consumption of food.
Uncoupling food consumption from energy need guided by the reward circuitry leads to continuous
snacking rather than a meal-based pattern of feeding. Mounting evidence suggests that in addition
to increased caloric intake, this type of irregular meal timing promotes desynchrony of precisely
timed metabolic processes, which further contributes to the maladaptive effects of overeating.
Indeed, disorganization of mealtimes by manipulation of circadian rhythms is correlated with weight
gain and metabolic syndrome in humans and animal models. How do rewarding foods influence
meal timing? The suprachiasmatic nucleus (SCN) is the primary regulator of circadian rhythms and
integrates sensory and physiologic information to synchronize homeostatic functions to the
day/night cycles. The basis for how reward, feeding and circadian circuitry interact to promote
normal and pathological feeding represents a significant gap in our knowledge. Here, we propose
to test the hypothesis that dopaminergic input from a select group of VTA-DA neurons to the SCN is
an integral part of the hedonic feeding neurocircuitry. We will genetically and anatomically define
the subpopulation of VTA neurons that releases DA in the SCN in response to palatable foods. We
will ablate DA production in these select neurons to validate their direct functional SCN input. This
proposal employs innovative approaches while leveraging our expertise in mouse genetics,
stereotaxic viral delivery, and functional neural circuitry mapping strategies. Using these tools, we
will identify the group of DA neurons that govern feeding behavior by modulating the activity of
central circadian clock neurons. This work will have broad implications for understanding how
reward circuitry overcomes homeostatic control while providing unique avenues for therapeutic
approaches against the obesity epidemic.
项目概要
体内脂肪过多会显着增加患一系列疾病的风险,包括糖尿病、
癌症、心血管疾病。据估计,有 4500 万美国成年人正在节食并
每年在减肥产品上花费超过 300 亿美元。大多数干预措施都失败了,导致
超重且易患代谢性疾病(如 2 型糖尿病)的人。这个趋势是
可能是因为容易获得美味且富含能量的食物,从而刺激了食物
无论能量需求如何,为了快乐而消费(享乐性喂养)。多巴胺能神经元
腹侧被盖区 (VTA) 计算食物奖励和释放的潜在价值
多巴胺 (DA) 调节下游靶点的活性。本次奖励的成果之一
计算是对获取和消费食物的必要驱动力的编码。
将食物消耗与由奖励电路引导的能量需求分开会导致持续的
吃零食而不是以正餐为主的喂养方式。越来越多的证据表明,此外
为了增加热量摄入,这种不规则的进餐时间会导致精确的不同步
定时的代谢过程,进一步加剧了暴饮暴食的适应不良效应。
事实上,通过控制昼夜节律来打乱进餐时间与体重相关
人类和动物模型中的增益和代谢综合征。奖励性食物如何影响
吃饭时间?视交叉上核(SCN)是昼夜节律的主要调节者
整合感觉和生理信息,使稳态功能与
昼/夜循环。奖励、喂养和昼夜节律电路如何相互作用以促进的基础
正常和病理性喂养代表了我们知识上的巨大差距。在此,我们建议
检验以下假设:从一组选定的 VTA-DA 神经元到 SCN 的多巴胺能输入是
享乐喂养神经回路的一个组成部分。我们将从遗传学和解剖学上定义
VTA 神经元亚群,在 SCN 中释放 DA,以响应美味的食物。我们
将消除这些选定神经元中的 DA 产生,以验证其直接功能性 SCN 输入。这
该提案采用创新方法,同时利用我们在小鼠遗传学方面的专业知识,
立体定位病毒传递和功能神经回路映射策略。使用这些工具,我们
将识别通过调节 DA 神经元的活动来控制摄食行为的组
中枢生物钟神经元。这项工作将对理解如何
奖励电路克服了稳态控制,同时提供了独特的治疗途径
对抗肥胖流行的方法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andrew David Steele其他文献
Andrew David Steele的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andrew David Steele', 18)}}的其他基金
Deciphering dopaminergic circuits required for food anticipatory activity in mice
破译小鼠食物预期活动所需的多巴胺能回路
- 批准号:
10629786 - 财政年份:2023
- 资助金额:
$ 44.1万 - 项目类别:
Investigating dopaminergic neuronal circuits mediating circadian entrainment to scheduled feeding
研究介导昼夜节律与计划喂养的多巴胺能神经元回路
- 批准号:
10093069 - 财政年份:2018
- 资助金额:
$ 44.1万 - 项目类别:
相似国自然基金
去泛素化酶USP5调控P53通路在伴E2A-PBX1成人ALL的致病机制研究
- 批准号:81900151
- 批准年份:2019
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
核基质结合区蛋白SATB1调控CCR7抑制急性T淋巴细胞白血病中枢浸润的作用与机制
- 批准号:81870113
- 批准年份:2018
- 资助金额:55.0 万元
- 项目类别:面上项目
成人及儿童急性淋巴细胞白血病的基因组转录组生物信息学分析方法建立及数据分析
- 批准号:81570122
- 批准年份:2015
- 资助金额:60.0 万元
- 项目类别:面上项目
NR3C1基因突变在成人急性淋巴细胞白血病耐药与复发中的作用与机制研究
- 批准号:81470309
- 批准年份:2014
- 资助金额:75.0 万元
- 项目类别:面上项目
儿童和成人急性T淋巴细胞白血病中miRNA和转录因子共调控网络的差异性研究
- 批准号:31270885
- 批准年份:2012
- 资助金额:80.0 万元
- 项目类别:面上项目
相似海外基金
A Novel VpreB1 Anti-body Drug Conjugate for the Treatment of B-Lineage Acute Lymphoblastic Leukemia/Lymphoma
一种用于治疗 B 系急性淋巴细胞白血病/淋巴瘤的新型 VpreB1 抗体药物偶联物
- 批准号:
10651082 - 财政年份:2023
- 资助金额:
$ 44.1万 - 项目类别:
LRP1 as a novel regulator of CXCR4 in adult neural stem cells and post-stroke response
LRP1 作为成体神经干细胞和中风后反应中 CXCR4 的新型调节剂
- 批准号:
10701231 - 财政年份:2023
- 资助金额:
$ 44.1万 - 项目类别:
Sensory Mechanisms of Cadmium-Induced Behavioral Disorders Across Generations
镉引起的几代人行为障碍的感觉机制
- 批准号:
10747559 - 财政年份:2023
- 资助金额:
$ 44.1万 - 项目类别:
Formation of a functional tendon enthesis during development and healing
在发育和愈合过程中形成功能性肌腱附着点
- 批准号:
10587399 - 财政年份:2023
- 资助金额:
$ 44.1万 - 项目类别:
Neural pathways for obesity development by AgRP neurons
AgRP 神经元导致肥胖发展的神经通路
- 批准号:
10681993 - 财政年份:2023
- 资助金额:
$ 44.1万 - 项目类别: