Super-Resolution Fluorescence Microscopy of Synaptic Plasticity on Unmodified Brain Slices in Health and Tauopathy
健康和 Tau 病未修饰脑切片突触可塑性的超分辨率荧光显微镜
基本信息
- 批准号:10729062
- 负责人:
- 金额:$ 187.08万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAMPA ReceptorsAcuteAgeAge MonthsAlzheimer&aposs DiseaseAreaAutomationBrainBrain regionBuffersCell DensityCell membraneCell surfaceCellular StructuresChemicalsColorCommunicationComputer softwareDLG4 geneDementiaDendritic SpinesDiseaseDissociationDyesElectrophysiology (science)EnvironmentEpitopesExcitatory SynapseFluorescenceFluorescence MicroscopyFluorescent DyesFrightFrontotemporal DementiaGlutamate ReceptorGlutamatesGoalsHealthHippocampusHomer 1HumanImageImaging TechniquesIndividualIntercellular JunctionsKnock-in MouseLabelLasersLearningLengthLong-Term PotentiationMasksMeasuresMediatingMemoryMemory LossMethodsMicroscopeMicrotomyMusMutationNerveNeuronsOpticsPhasePhysiologyPostsynaptic MembranePresynaptic TerminalsProteinsResolutionSamplingSilicone OilsSiteSliceSpeedStructureSurfaceSynapsesSynaptic plasticitySystemTauopathiesTechniquesTechnologyTestingThickThinnessTissuesVisualizationWorkbrain tissueconditioned feardensitydetectordigitalfluorophorehippocampal pyramidal neuronhyperphosphorylated tauimaging capabilitiesimprovedlight scatteringmetermutantnanonanobodiesnanocolumnnanometernanometer resolutionnanoscaleneuron losspostsynapticpreservationpresynapticreconstructionsample fixationtau Proteinsultra high resolutionunpublished works
项目摘要
Neuronal communication occurs at intercellular junctions called synapses, which can dynamically strengthen
and weaken — termed synaptic plasticity. While synaptic plasticity underlies learning and memory, abnormal
plasticity is associated with synapse loss and memory decline. Synaptic plasticity is expressed, in part, by
changes in the level of glutamate-gated AMPA receptors (AMPARs). The distance scale is ~10-25 nm, and thus,
~10 nm resolution is needed to ascertain structures like nanodomains and nanocolumns. Measuring such
changes at the nanometer level in native brain slices is difficult due to the extraordinary high density of cells and
proteins, particularly in the hippocampus. While many super-resolution fluorescence microscopy (SRFM) tech-
niques (most commonly dSTORM) exist to image AMPARs in dissociated neuronal culture, very few have been
applied with high resolution to brain slices: the ones that do, look only near the edge (a few µm deep) or use
knock-in mice of epitope-tagged subunits. In addition, methods to decrowd proteins, such as expansion and
clearing, involve extensive tissue manipulation. As a result, SRFM on unmodified brain slices is considered the
‘gold standard’. The goal of this technology proposal (PAR-22-127) is to develop new forms of SRFM that can
isolate native surface AMPARs in both synaptic and non-synaptic domains during synaptic plasticity on unmod-
ified brain slices as a function of health and tauopathy that cause memory loss. To identify synaptic vs non-
synaptic AMPARs on the cell membrane necessitates multi-color SRFM techniques to define the spatial resolu-
tion of synaptic proteins surrounding surface AMPARs. In our unpublished work, we selectively labeled native
AMPAR subunits GluA2-4 on the cell surface of live 200 µm thick brain slices using a small chemical labeling
agent called CAM2-Alexa647. After fixation and sectioning to ~30 µm, the slices were labeled on the postsynaptic
protein, Homer1, with a second SRFM dye (CF568). AMPAR and Homer1 were then imaged using two-color 3D
dSTORM with an aberration corrected microscope and deformable mirrors, resulting in 20x20x90 nm 3D reso-
lution on a native brain slice. This has not previously been accomplished. In Specific Aim 1, we will extend this
work to achieve 3-color SRFM with ~ 11 x 11 x 40 nm resolution to determine AMPAR distances from Bassoon
or RIM1 in the presynaptic terminal, thereby identifying synaptic vs non-synaptic AMPARs. Hyperphosphorylated
tau will be labeled with a 4th SRFM color. A new self-interferometric SRFM technique, called SELFI, along with
3D-dSTORM, will also be used with the goal of simplifying the optics. In Specific Aim 2, we aim for an improved
resolution (< 10 nm) by serially slicing the native brain slices into “thin” sections (0.7~4 µm) and digitally recom-
bining their images to the original thickness. Equipped with new cameras, lasers, fluorescent dyes, and software,
we expect a 30-100-fold speed improvement, possibly extending 3D dSTORM and SELFI to other parts of the
brain. We will validate these techniques in well-established systems for surface AMPAR change including hip-
pocampal synaptic plasticity, fear-induced learning, and tauopathy.
神经元通信发生在称为突触的细胞间连接处,可以动态增强
和弱 - 称为合成可塑性。虽然合成可塑性是学习和记忆的基础,但异常
可塑性与突触丧失和记忆力下降有关。突触可塑性部分通过
谷氨酸门控AMPA受体(AMPARS)的水平变化。距离尺度为〜10-25 nm,因此
需要〜10 nm的分辨率来确定纳米构和纳米序列等结构。测量这样的
由于细胞的高密度和
蛋白质,特别是在海马中。而许多超分辨率荧光显微镜(SRFM)技术
在分离的神经元培养中存在图像AMPAR的Niques(最常见的DSTORM),很少有
用高分辨率涂在大脑切片中:那些这样做的,只看在边缘附近(深几µm)或使用
表位标签亚基的敲门鼠。另外,删除蛋白质的方法,例如扩展和
清除,涉及广泛的组织操作。结果,未修饰的大脑切片上的SRFM被认为
“黄金标准”。该技术建议的目标(PAR-22-127)是开发新形式的SRFM形式
突触可塑性期间突触型和非突触结构域的分离天然表面AMPAR在非模型上
IFIDIED大脑切片是导致记忆力丧失的健康和tauopathy的函数。确定突触与非 -
细胞膜上的突触AMPAR需要多色SRFM技术来定义空间分辨率 -
表面AMPAR周围的突触蛋白的影响。在未发表的作品中,我们有选择地标记为本地
AMPAR亚基GLUA2-4在活体200 µm厚脑切片的细胞表面上使用小型化学标记
特工称为CAM2-ALEXA647。固定并截至约30 µm之后,将切片标记在突触后。
蛋白质,HOMER1,具有第二个SRFM染料(CF568)。然后使用两色3D成像AMPAR和HOMER1
DSTORM具有纠正的显微镜和可变形的镜子,导致20x20x90 nm 3D reso-
在本地大脑切片上流式传输。以前尚未实现这一目标。在特定目标1中,我们将扩展
用〜11 x 11 x 40 nm分辨率实现3色SRFM的工作,以确定与巴松的AMPAR距离
或突触前末端中的RIM1,从而识别突触与非突触的AMPAR。高磷酸化
Tau将用第4个SRFM颜色标记。一种新的自我开采计量学SRFM技术,称为selfi,以及
3D-DSTORM也将用于简化光学的目标。在特定目标2中,我们的目标是改进
分辨率(<10 nm)通过串行将天然脑切片切成“薄”部分(0.7〜4 µm),并以数字方式推荐
将他们的图像凸出到原始厚度。配备新的相机,激光器,荧光染料和软件,
我们希望提高30-100倍的速度,可能将3D DSTORM和SEFFI扩展到
脑。我们将验证这些技术在公认的系统中,以进行表面AMPAR变化,包括髋关节
Pocampal突触可塑性,恐惧引起的学习和tauopathy。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hee Jung Chung其他文献
Hee Jung Chung的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hee Jung Chung', 18)}}的其他基金
Dynamic changes in PIP2 binding sites and their impact on axonal targeting and function of epilepsy-associated KCNQ/Kv7 channels
PIP2 结合位点的动态变化及其对癫痫相关 KCNQ/Kv7 通道的轴突靶向和功能的影响
- 批准号:
10744934 - 财政年份:2023
- 资助金额:
$ 187.08万 - 项目类别:
Super-Resolution Microscopy of Neuronal Synapses with Advanced Imaging Tools
使用先进成像工具对神经元突触进行超分辨率显微镜检查
- 批准号:
10467027 - 财政年份:2017
- 资助金额:
$ 187.08万 - 项目类别:
Super-Resolution Microscopy of Neuronal Synapses with Small Quantum Dots and Advanced Imaging Tools
使用小量子点和先进成像工具对神经元突触进行超分辨率显微镜检查
- 批准号:
9975253 - 财政年份:2017
- 资助金额:
$ 187.08万 - 项目类别:
Super-Resolution Microscopy of Neuronal Synapses with Advanced Imaging Tools
使用先进成像工具对神经元突触进行超分辨率显微镜检查
- 批准号:
10299205 - 财政年份:2017
- 资助金额:
$ 187.08万 - 项目类别:
Super-Resolution Microscopy of Neuronal Synapses with Small Quantum Dots and Advanced Imaging Tools
使用小量子点和先进成像工具对神经元突触进行超分辨率显微镜检查
- 批准号:
9384063 - 财政年份:2017
- 资助金额:
$ 187.08万 - 项目类别:
Super-Resolution Microscopy of Neuronal Synapses with Advanced Imaging Tools
使用先进成像工具对神经元突触进行超分辨率显微镜检查
- 批准号:
10684709 - 财政年份:2017
- 资助金额:
$ 187.08万 - 项目类别:
Super-Resolution Microscopy of Small Quantum Dots to Elucidate the Mechanisms of Alzheimer's Disease
小量子点的超分辨率显微镜阐明阿尔茨海默病的机制
- 批准号:
9160604 - 财政年份:2016
- 资助金额:
$ 187.08万 - 项目类别:
Super-Resolution Microscopy of Small Quantum Dots to Elucidate the Mechanisms of Alzheimer's Disease
小量子点的超分辨率显微镜阐明阿尔茨海默病的机制
- 批准号:
9918990 - 财政年份:2016
- 资助金额:
$ 187.08万 - 项目类别:
Super-Resolution Microscopy of Small Quantum Dots to Elucidate the Mechanisms of Alzheimer's Disease
小量子点的超分辨率显微镜阐明阿尔茨海默病的机制
- 批准号:
9478382 - 财政年份:2016
- 资助金额:
$ 187.08万 - 项目类别:
Super-Resolution Microscopy of Small Quantum Dots to Elucidate the Mechanisms of Alzheimer's Disease
小量子点的超分辨率显微镜阐明阿尔茨海默病的机制
- 批准号:
9274105 - 财政年份:2016
- 资助金额:
$ 187.08万 - 项目类别:
相似国自然基金
ABHD6与AMPA受体结合位点的鉴定及该位点在AMPA受体转运和功能调控中的作用研究
- 批准号:32300794
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
SNX32棕榈酰化修饰调控AMPA受体介导的突触可塑性在AD中的作用机制
- 批准号:32360219
- 批准年份:2023
- 资助金额:35 万元
- 项目类别:地区科学基金项目
翻译水平选择性调控皮层AMPA受体表达促进神经元形态功能发育及神经环路塑造的分子机制及生理功能研究
- 批准号:32360194
- 批准年份:2023
- 资助金额:31 万元
- 项目类别:地区科学基金项目
AMPA受体正向变构调节剂快速抗抑郁作用及其神经机制研究
- 批准号:82371524
- 批准年份:2023
- 资助金额:47 万元
- 项目类别:面上项目
基于奖赏环路内AMPA受体相关的突触可塑性变化探讨痫蛋白在抑郁症发病中的作用及机制
- 批准号:82360277
- 批准年份:2023
- 资助金额:32.2 万元
- 项目类别:地区科学基金项目
相似海外基金
Mechanisms of cell adhesion molecule LRRTM2 in basal and potentiated synaptic signaling
细胞粘附分子LRRTM2在基础和增强突触信号传导中的机制
- 批准号:
10605490 - 财政年份:2022
- 资助金额:
$ 187.08万 - 项目类别:
Mechanisms of cell adhesion molecule LRRTM2 in basal and potentiated synaptic signaling
细胞粘附分子LRRTM2在基础和增强突触信号传导中的机制
- 批准号:
10753395 - 财政年份:2022
- 资助金额:
$ 187.08万 - 项目类别:
Investigating Syngap1 as a regulator of striatal synaptic function
研究 Syngap1 作为纹状体突触功能的调节因子
- 批准号:
10512334 - 财政年份:2022
- 资助金额:
$ 187.08万 - 项目类别:
Dissecting pre- vs postsynaptic actin dynamics in synapse structure and strength
剖析突触结构和强度方面的突触前和突触后肌动蛋白动力学
- 批准号:
10404155 - 财政年份:2021
- 资助金额:
$ 187.08万 - 项目类别:
Maladaptive Plasticity in Spinal Cord Injury: Cellular Mechanisms
脊髓损伤中的适应不良可塑性:细胞机制
- 批准号:
10276397 - 财政年份:2021
- 资助金额:
$ 187.08万 - 项目类别: