Super-Resolution Microscopy of Small Quantum Dots to Elucidate the Mechanisms of Alzheimer's Disease

小量子点的超分辨率显微镜阐明阿尔茨海默病的机制

基本信息

项目摘要

PROJECT SUMMARY / ABSTRACT Alzheimer's disease (AD) afflicts more than 5 million Americans, yet no known drug is able to prevent or stop the disease. Before AD fully develops with insoluble amyloid-β plaque deposits and neurodegeneration, there is a progressive cognitive decline associated with the impairment of synaptic plasticity that underlies learning and memory. This abnormal synaptic plasticity is likely caused by soluble amyloid-β oligomers affecting the synaptic levels of AMPA and NMDA receptors, two glutamatergic receptors that mediate induction and expression of synaptic plasticity. However, the underlying detailed mechanisms are not known and are exceptionally challenging to study due to the complex behavior of these receptors and the small nanometer-scale dimensions of the synaptic domains in which they reside. The goal of this proposal is to understand the molecular details of abnormal synaptic plasticity present in early AD by developing small nanoparticle-based optical probes and new microscopy techniques to analyze the position and dynamics of AMPA and NMDA receptors in normal and AD brains. This goal will be accomplished through the individual and collective efforts of three principle investigators, Paul Selvin (microscopy), Andrew Smith (quantum dots) and Hee Jung Chung (neurobiology). They have previously worked as a team to publish two manuscripts on generating small quantum dots (sQD) (< 10 nm diameter) that can enter the neuronal synapse and accurately follow the receptor number and dynamic placement in dissociated cultured neurons. To achieve this goal, Aim 1 will optimize super-resolution imaging techniques for sQDs in dissociated hippocampal culture and thick hippocampal slices with intact circuitry, specifically focusing on 1- and 2-photon excitation with FIONA and PALM/STORM microscopy. This will allow < 20 nm resolution in all three dimensions. Aim 2 will develop a novel set of sQDs that are smaller, stable, and monovalent with minimal non-specific interaction with tissue. Aim 3 will apply sQDs and super-resolution optical methods to perform single-molecule imaging of glutamate receptors during synaptic plasticity in hippocampal culture and acute slices from wild-type and AD transgenic model mice. Because of our on-going successful collaboration, we are able to work with the AD model immediately, while new microscopy and quantum dots are being generated. This research will increase our understanding of the early pathogenesis of AD and therefore foster the development of new therapeutic strategies that could specifically inhibit the progression of cognitive decline of this disease.
项目摘要 /摘要 阿尔茨海默氏病(AD)折磨了超过500万美国人,但没有已知的药物能够预防或停止 疾病。在使用不溶性淀粉样蛋白斑块沉积和神经变性充分发展之前,有 与学习和研究基础的突触可塑性受损相关的渐进认知下降和 记忆。这种异常突触可塑性可能是由影响突触的固体淀粉样蛋白β低聚物引起的 AMPA和NMDA受体的水平,两个介导和表达的谷氨酸能受体 突触可塑性。但是,基本的详细机制尚不清楚,并且是异常的 由于这些受体的复杂行为和小纳米尺度的尺寸,研究的挑战 它们所在的突触域。 该提议的目的是了解早期存在异常突触可塑性的分子细节 通过开发基于纳米颗粒的小型光学问题和新的显微镜技术来分析AD AMPA和NMDA受体在正常和AD大脑中的位置和动力学。这个目标将实现 通过三个主要调查人员的个人和集体努力,保罗·塞尔文(显微镜),安德鲁 史密斯(量子点)和Hee Jung Chung(神经生物学)。他们以前曾担任团队发表 可以进入神经元的两个有关产生小量子点(SQD)(<10 nm直径)的手稿 突触并准确跟随受体数量和动态放置在解离的培养神经元中。 为了实现这一目标,AIM 1将优化分离的SQD的超分辨率成像技术 海马培养和厚的海马切片,具有完整的电路,专门针对1片和2光子 fiona和棕榈/风暴显微镜的兴奋。这将允许在所有三个维度上分辨率<20 nm。 AIM 2将开发一组新型的SQD,这些SQD较小,稳定且单价为最少的非特异性SQD 与组织相互作用。 AIM 3将应用SQD和超分辨率光学方法来执行单分子 在海马培养和野生型急性切片中突触可塑性期间谷氨酸受体的成像 和AD转基因模型小鼠。由于我们持续的成功合作,我们能够与 AD模型立即生成新的显微镜和量子点。这项研究会 提高我们对AD早期发病机理的理解,从而促进新的发展 可以专门抑制该疾病认知下降的进展的治疗策略。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Hee Jung Chung其他文献

Hee Jung Chung的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Hee Jung Chung', 18)}}的其他基金

Super-Resolution Fluorescence Microscopy of Synaptic Plasticity on Unmodified Brain Slices in Health and Tauopathy
健康和 Tau 病未修饰脑切片突触可塑性的超分辨率荧光显微镜
  • 批准号:
    10729062
  • 财政年份:
    2023
  • 资助金额:
    $ 66.86万
  • 项目类别:
Dynamic changes in PIP2 binding sites and their impact on axonal targeting and function of epilepsy-associated KCNQ/Kv7 channels
PIP2 结合位点的动态变化及其对癫痫相关 KCNQ/Kv7 通道的轴突靶向和功能的影响
  • 批准号:
    10744934
  • 财政年份:
    2023
  • 资助金额:
    $ 66.86万
  • 项目类别:
Super-Resolution Microscopy of Neuronal Synapses with Advanced Imaging Tools
使用先进成像工具对神经元突触进行超分辨率显微镜检查
  • 批准号:
    10467027
  • 财政年份:
    2017
  • 资助金额:
    $ 66.86万
  • 项目类别:
Super-Resolution Microscopy of Neuronal Synapses with Small Quantum Dots and Advanced Imaging Tools
使用小量子点和先进成像工具对神经元突触进行超分辨率显微镜检查
  • 批准号:
    9975253
  • 财政年份:
    2017
  • 资助金额:
    $ 66.86万
  • 项目类别:
Super-Resolution Microscopy of Neuronal Synapses with Advanced Imaging Tools
使用先进成像工具对神经元突触进行超分辨率显微镜检查
  • 批准号:
    10299205
  • 财政年份:
    2017
  • 资助金额:
    $ 66.86万
  • 项目类别:
Super-Resolution Microscopy of Neuronal Synapses with Small Quantum Dots and Advanced Imaging Tools
使用小量子点和先进成像工具对神经元突触进行超分辨率显微镜检查
  • 批准号:
    9384063
  • 财政年份:
    2017
  • 资助金额:
    $ 66.86万
  • 项目类别:
Super-Resolution Microscopy of Neuronal Synapses with Advanced Imaging Tools
使用先进成像工具对神经元突触进行超分辨率显微镜检查
  • 批准号:
    10684709
  • 财政年份:
    2017
  • 资助金额:
    $ 66.86万
  • 项目类别:
Super-Resolution Microscopy of Small Quantum Dots to Elucidate the Mechanisms of Alzheimer's Disease
小量子点的超分辨率显微镜阐明阿尔茨海默病的机制
  • 批准号:
    9160604
  • 财政年份:
    2016
  • 资助金额:
    $ 66.86万
  • 项目类别:
Super-Resolution Microscopy of Small Quantum Dots to Elucidate the Mechanisms of Alzheimer's Disease
小量子点的超分辨率显微镜阐明阿尔茨海默病的机制
  • 批准号:
    9918990
  • 财政年份:
    2016
  • 资助金额:
    $ 66.86万
  • 项目类别:
Super-Resolution Microscopy of Small Quantum Dots to Elucidate the Mechanisms of Alzheimer's Disease
小量子点的超分辨率显微镜阐明阿尔茨海默病的机制
  • 批准号:
    9478382
  • 财政年份:
    2016
  • 资助金额:
    $ 66.86万
  • 项目类别:

相似国自然基金

SGO2/MAD2互作调控肝祖细胞的细胞周期再进入影响急性肝衰竭肝再生的机制研究
  • 批准号:
    82300697
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
SSRP1/Sp-1转录调控的MFGE8通过SIRT6影响铁死亡在脓毒症急性肾损伤中的机制研究
  • 批准号:
    82302418
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
人群mtDNA空间异质性对急性高原反应发病的影响机制研究
  • 批准号:
    42377466
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
蜗牛粘液糖胺聚糖影响中性粒细胞粘附和迁移在治疗急性呼吸窘迫综合征中的作用研究
  • 批准号:
    82360025
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
高甘油三酯通过TLR4/caspase-8影响急性胰腺炎CD4+T细胞程序性死亡的机制研究
  • 批准号:
    82360135
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

Functional, structural, and computational consequences of NMDA receptor ablation at medial prefrontal cortex synapses
内侧前额皮质突触 NMDA 受体消融的功能、结构和计算后果
  • 批准号:
    10677047
  • 财政年份:
    2023
  • 资助金额:
    $ 66.86万
  • 项目类别:
RECIPROCAL FEEDBACK MECHANISMS OF GLIOBLASTOMA AND NEURONAL NETWORK HYPEREXCITABILITY
胶质母细胞瘤与神经网络过度兴奋的交互反馈机制
  • 批准号:
    10629813
  • 财政年份:
    2023
  • 资助金额:
    $ 66.86万
  • 项目类别:
Circuit control of motivation to take and seek alcohol
饮酒和寻求酒精动机的电路控制
  • 批准号:
    10753712
  • 财政年份:
    2023
  • 资助金额:
    $ 66.86万
  • 项目类别:
Investigating tonic and synaptic excitatory signaling in the bed nucleus of the stria terminalis across models of alcohol exposure
研究酒精暴露模型中终纹床核的强直和突触兴奋信号传导
  • 批准号:
    10825889
  • 财政年份:
    2023
  • 资助金额:
    $ 66.86万
  • 项目类别:
Determining pathogenic PrPC-induced signaling pathways in human iPSC-induced neurons
确定人 iPSC 诱导神经元中致病性 PrPC 诱导的信号通路
  • 批准号:
    10791127
  • 财政年份:
    2023
  • 资助金额:
    $ 66.86万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了