Super-Resolution Microscopy of Neuronal Synapses with Small Quantum Dots and Advanced Imaging Tools
使用小量子点和先进成像工具对神经元突触进行超分辨率显微镜检查
基本信息
- 批准号:9975253
- 负责人:
- 金额:$ 31.57万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-07-01 至 2021-08-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAMPA ReceptorsAlzheimer&aposs DiseaseBasic ScienceBehaviorBiologicalBiological SciencesBiologyCaliberCaringCellsChemicalsClinicalColorCommunicationDLG1 geneDLG4 geneDetectionDiffusionDyesEnsureEventFluorescenceFluorescent ProbesFutureGenerationsGlutamate ReceptorGoalsGrantGrant ReviewHealthHourImageImaging DeviceIntegral Membrane ProteinLabelLearningLigandsLong-Term DepressionLong-Term PotentiationMeasurementMeasuresMemoryMethodsMicroscopeMicroscopyMinorityMisinformationMolecularMonitorN-MethylaspartateNeurodegenerative DisordersNeuronsNeurosciencesNeurotransmitter ReceptorOpticsOutputPaperParkinson DiseasePhotonsProblem SolvingProcessProteinsPublishingQuantum DotsRegulationResolutionS-nitro-N-acetylpenicillamineSamplingSiteStrokeSurfaceSynapsesSynaptic CleftSynaptic plasticityTechnologyTemperatureTestingTimebasedensitydesignexperimental studyfluorophoremicroscopic imagingnanometernanoscalepreventreceptorsingle moleculetooltrafficking
项目摘要
Abstract
The ability to measure the molecular mechanisms of neuronal communication at the nanometer spatial scale
will have enormous impact in both basic bioscience and in future clinical neuroscience. In particular, AMPA-
and NMDA-type glutamate receptors (AMPARs/NMDARs, known as iGluRs) are involved in neuron-to-neuron
communication across synapses, where these receptors contribute to learning and memory, and when
dysregulated, to neurodegenerative diseases including Alzheimer's, Parkinson's and complications from
strokes. A critical mechanistic event is the transport of iGluRs into and out of synapses (or parts of synapses)
in a dynamic process called synaptic plasticity. A revolution is underway because of the recent ability to
resolve these events at the nanometer-scale using fluorescence super-resolution microscopy (FSRM).
However significant inherent problems with this technology have led to confounding results and misinformation.
The biggest problem has been with the fluorescent probes used to image receptors: conventional organic
fluorescent probes last only a few seconds; commercial (and big) quantum dots (bQDs), despite their
exceptional brightness and photostability, are over 20 nm in diameter and are too large to fit inside the synaptic
cleft where iGluRs are active. We recently overcame this problem through an R21, which enabled us to
develop small quantum dots (sQDs) that are <10 nm in diameter. They specifically label iGluRs in the synaptic
cleft, which is just ~20-30 nm wide. The sQDs do this with tremendous brightness and stability, resulting in
FSRM images in 3-dimensions with 100 ms time-resolution for greater than 2 minutes of continuous excitation.
In contrast, bQD-labeled AMPARs are predominantly stuck in the extra-synaptic space because steric
hindrance prevents them from going inside. We have recently extended these findings with a newer sQD that
is completely stable, and with small organic fluorophores that we now show are stable enough, on live neurons
(which previously had been too photolabile for such measurements.) Our findings, some of which have been
published in 3 papers resulting from our R21 grant, may have tremendous implications for basic science and
health: the surface mobility and trafficking of iGluRs, which depend on the ease of diffusion inside and outside
of synapses, regulates synaptic efficacy. Here we wish to understand the distribution and dynamics of iGluRs,
both within the synapses and between synapses, using our new sQDs and other new photoactivatable
fluorescent proteins and some organic fluorophores. For this, a number of new advances in optics, probe
design, and care with receptor monovalency are necessary. After these technical problems are solved (which
will be useful to answer many different biological questions), we will validate the biology that we have
observed, and to apply these to proof-of-principle experiments involved in two key biological questions: 1) In
what way do receptors move into and around the synapse during homeostatic and synaptic plasticity? 2) Do
endocytosed receptors communicate with each other between synapses on the same neuron?
抽象的
在纳米空间尺度上测量神经元通信的分子机制的能力
将对基本的生物科学和未来的临床神经科学产生巨大影响。特别是AMPA-
NMDA型谷氨酸受体(AMPAR/NMDAR,称为iGlurs)参与神经元到神经元
跨突触的交流,这些受体有助于学习和记忆,以及何时
失调的神经退行性疾病,包括阿尔茨海默氏症,帕金森氏症和并发症
中风。一个关键的机械事件是将iglurs传输到突触(或突触的一部分)中
在一个称为突触可塑性的动态过程中。由于最近的能力,革命正在进行
使用荧光超分辨率显微镜(FSRM)在纳米尺度上解决这些事件。
无论这项技术的固有问题带来了严重的固有问题,导致结果和错误信息。
最大的问题是用于图像受体的荧光探针:常规有机物
荧光探针仅持续几秒钟;尽管有商业(和大)量子点(BQD)
出色的亮度和光稳定性,直径超过20 nm,太大了,无法安装在突触中
裂缝处于活跃的地方。我们最近通过R21克服了这个问题,这使我们能够
开发直径小于10 nm的小量子点(SQD)。他们在突触中专门将iGlurs标记
裂口,宽度约为20-30 nm。 SQD以极大的亮度和稳定性来做到这一点,从而
FSRM图像在3维中具有100毫秒的时间分辨率,以大于2分钟的连续激发。
相比
阻碍阻止他们进入内部。我们最近以较新的SQD扩展了这些发现
是完全稳定的,在现场神经元上,我们现在表现出的小有机荧光团足够稳定
(以前对于这种测量而过于具有光值。)我们的发现,其中一些是
由我们的R21赠款产生的3篇论文发表,可能对基础科学和
健康:iGlurs的表面迁移率和贩运,取决于内部和外部扩散的便利性
突触,调节突触功效。在这里,我们希望理解iGlurs的分布和动态,
使用我们的新SQD和其他新的光活化
荧光蛋白和一些有机荧光团。为此,光学方面的许多新进展,探测
设计和接受受体一致性是必要的。解决这些技术问题之后(这
对于回答许多不同的生物学问题将是有用的),我们将验证我们拥有的生物学
观察到,并将其应用于两个关键生物学问题所涉及的原理实验证明:1)
在体内和突触可塑性期间,受体如何进入突触和周围? 2)做
内吞受体在同一神经元上的突触之间相互通信?
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hee Jung Chung其他文献
Hee Jung Chung的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hee Jung Chung', 18)}}的其他基金
Super-Resolution Fluorescence Microscopy of Synaptic Plasticity on Unmodified Brain Slices in Health and Tauopathy
健康和 Tau 病未修饰脑切片突触可塑性的超分辨率荧光显微镜
- 批准号:
10729062 - 财政年份:2023
- 资助金额:
$ 31.57万 - 项目类别:
Dynamic changes in PIP2 binding sites and their impact on axonal targeting and function of epilepsy-associated KCNQ/Kv7 channels
PIP2 结合位点的动态变化及其对癫痫相关 KCNQ/Kv7 通道的轴突靶向和功能的影响
- 批准号:
10744934 - 财政年份:2023
- 资助金额:
$ 31.57万 - 项目类别:
Super-Resolution Microscopy of Neuronal Synapses with Advanced Imaging Tools
使用先进成像工具对神经元突触进行超分辨率显微镜检查
- 批准号:
10467027 - 财政年份:2017
- 资助金额:
$ 31.57万 - 项目类别:
Super-Resolution Microscopy of Neuronal Synapses with Advanced Imaging Tools
使用先进成像工具对神经元突触进行超分辨率显微镜检查
- 批准号:
10299205 - 财政年份:2017
- 资助金额:
$ 31.57万 - 项目类别:
Super-Resolution Microscopy of Neuronal Synapses with Small Quantum Dots and Advanced Imaging Tools
使用小量子点和先进成像工具对神经元突触进行超分辨率显微镜检查
- 批准号:
9384063 - 财政年份:2017
- 资助金额:
$ 31.57万 - 项目类别:
Super-Resolution Microscopy of Neuronal Synapses with Advanced Imaging Tools
使用先进成像工具对神经元突触进行超分辨率显微镜检查
- 批准号:
10684709 - 财政年份:2017
- 资助金额:
$ 31.57万 - 项目类别:
Super-Resolution Microscopy of Small Quantum Dots to Elucidate the Mechanisms of Alzheimer's Disease
小量子点的超分辨率显微镜阐明阿尔茨海默病的机制
- 批准号:
9160604 - 财政年份:2016
- 资助金额:
$ 31.57万 - 项目类别:
Super-Resolution Microscopy of Small Quantum Dots to Elucidate the Mechanisms of Alzheimer's Disease
小量子点的超分辨率显微镜阐明阿尔茨海默病的机制
- 批准号:
9918990 - 财政年份:2016
- 资助金额:
$ 31.57万 - 项目类别:
Super-Resolution Microscopy of Small Quantum Dots to Elucidate the Mechanisms of Alzheimer's Disease
小量子点的超分辨率显微镜阐明阿尔茨海默病的机制
- 批准号:
9478382 - 财政年份:2016
- 资助金额:
$ 31.57万 - 项目类别:
Super-Resolution Microscopy of Small Quantum Dots to Elucidate the Mechanisms of Alzheimer's Disease
小量子点的超分辨率显微镜阐明阿尔茨海默病的机制
- 批准号:
9274105 - 财政年份:2016
- 资助金额:
$ 31.57万 - 项目类别:
相似国自然基金
SNX32棕榈酰化修饰调控AMPA受体介导的突触可塑性在AD中的作用机制
- 批准号:32360219
- 批准年份:2023
- 资助金额:35 万元
- 项目类别:地区科学基金项目
ABHD6与AMPA受体结合位点的鉴定及该位点在AMPA受体转运和功能调控中的作用研究
- 批准号:32300794
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
翻译水平选择性调控皮层AMPA受体表达促进神经元形态功能发育及神经环路塑造的分子机制及生理功能研究
- 批准号:32360194
- 批准年份:2023
- 资助金额:31 万元
- 项目类别:地区科学基金项目
AMPA受体正向变构调节剂快速抗抑郁作用及其神经机制研究
- 批准号:82371524
- 批准年份:2023
- 资助金额:47 万元
- 项目类别:面上项目
基于奖赏环路内AMPA受体相关的突触可塑性变化探讨痫蛋白在抑郁症发病中的作用及机制
- 批准号:82360277
- 批准年份:2023
- 资助金额:32.2 万元
- 项目类别:地区科学基金项目
相似海外基金
Super-Resolution Fluorescence Microscopy of Synaptic Plasticity on Unmodified Brain Slices in Health and Tauopathy
健康和 Tau 病未修饰脑切片突触可塑性的超分辨率荧光显微镜
- 批准号:
10729062 - 财政年份:2023
- 资助金额:
$ 31.57万 - 项目类别:
Tau-Fyn Interaction and Alzheimer's Disease
Tau-Fyn 相互作用与阿尔茨海默病
- 批准号:
10292907 - 财政年份:2020
- 资助金额:
$ 31.57万 - 项目类别:
Super-Resolution Microscopy of Neuronal Synapses with Small Quantum Dots and Advanced Imaging Tools
使用小量子点和先进成像工具对神经元突触进行超分辨率显微镜检查
- 批准号:
9384063 - 财政年份:2017
- 资助金额:
$ 31.57万 - 项目类别:
Super-Resolution Microscopy of Small Quantum Dots to Elucidate the Mechanisms of Alzheimer's Disease
小量子点的超分辨率显微镜阐明阿尔茨海默病的机制
- 批准号:
9918990 - 财政年份:2016
- 资助金额:
$ 31.57万 - 项目类别:
Probing the Structure of the Synapse Using Superresolution Light Microscopy
使用超分辨率光学显微镜探测突触的结构
- 批准号:
7667163 - 财政年份:2007
- 资助金额:
$ 31.57万 - 项目类别: