MOSAIC: Imaging Human Tissue State Dynamics In Vivo
MOSAIC:体内人体组织状态动态成像
基本信息
- 批准号:10729423
- 负责人:
- 金额:$ 34.29万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-18 至 2028-08-31
- 项目状态:未结题
- 来源:
- 关键词:AdultAutomobile DrivingBiological MarkersBiopsyBrainBrain NeoplasmsCell modelCellsClinicalDiagnosisDiseaseDisease ProgressionEpidermal Growth Factor ReceptorFacility AccessesGenomic SegmentGlioblastomaGliomaGuidelinesHumanImageImage AnalysisImmuneImmune TargetingImmune responseImmunocompetentImmunooncologyImmunotherapyInflammationInflammatoryMagnetic Resonance ImagingMalignant - descriptorMathematicsMeasuresMediatingModelingMolecularMonitorNatureOncologyOutcomePatient-Focused OutcomesPatientsPhenotypePhysiologicalPopulationPrimary Brain NeoplasmsProliferatingRecurrenceResidual NeoplasmResourcesSamplingSignal TransductionStudy modelsSystems AnalysisTherapeuticTimeTissue ModelTissue SampleTissuesTreatment ProtocolsWorkangiogenesisclinical imagingcohortcosthuman imaginghuman tissueimaging facilitiesimmunotherapy clinical trialsimprovedin vivoindividual patientindividualized medicineneoplastic cellnoninvasive diagnosisnovelpatient safetyphysical propertypredictive modelingquantitative imagingradiomicsresponsestandard of caretooltreatment responsetumortumor behavior
项目摘要
SUMMARY: PROJECT 2: IMAGING THE DYNAMIC TISSUE STATE IN PATIENTS IN VIVO
With a dismal median survival of 16 months, glioblastoma (GBM) is the most common malignant primary brain
tumor within adult patients. Response to the standard-of-care (SOC) is widely variable across patients.
Identifying optimal targeted treatments traditionally relies on tissue sampling to identify patient-relevant targets.
Yet, tissue sampling has many severe limitations and costs (time, money, and facility access), and ultimately
provides only limited scope both spatially and temporally thus always leaving behind residual tumor cells that
have not been sampled. Multi-parametric magnetic resonance imaging (MRI) measures an array of
complementary physiologic biomarkers that correspond with diverse tumor phenotypes (e.g., proliferation,
inflammation, angiogenesis), and it serves as the clinical mainstay for monitoring therapeutic response and
disease progression. As tumor cell signaling may be mediated through interactions (i.e.,“cross-talk”) with
surrounding non-tumoral cells in the regional microenvironment, there is a critical need to define the degree to
which this cross-talk influences local tissue state, phenotypic expression, and disease
progression. Understanding these associations should help refine the clinical interpretations of imaging
phenotypes to improve guidelines for non-invasive diagnosis and disease monitoring. There is an urgent need
for image-based radiomics tools that can 1) predict which patients will respond to a given treatment and 2) can
observe/track that response over time.
Overall Hypothesis: Tissue states, represented as combinations of cellular constituents and phenotypes, can be
resolved on clinical imaging to a level sufficient to identify transitions in these states with and without treatments
in individual patients in vivo.
Our two aims in this project investigate this hypothesis in two separate settings, Aim 1) Standard of Care, Aim
2) Immunotherapy. In these aims, we will characterize the landscape of phenotypic states, build image-based
models to predict tissue state from images, investigate how predicted tumor states correspond with outcomes,
quantify dynamics of states from pre- to post-therapy, and finally build mechanistic models to understand the
critical driving differences in the flow of cells in local phenotype state space leading to the overall tumor state.
摘要:项目2:成像体内患者的动态组织状态
胶质母细胞瘤(GBM)是最常见的恶性原发性大脑的中位生存期的中位生存期。
成人患者的肿瘤。对护理标准(SOC)的反应在患者之间存在很大变化。
传统上,识别最佳靶向疗法依赖于组织采样来识别与患者相关的靶标。
但是,组织采样有许多严重的限制和成本(时间,金钱和设施访问),最终
仅在空间和临时提供有限的范围,因此总是留下残留的肿瘤细胞
没有被采样。多参数磁共振成像(MRI)测量
完全物理生物标志物与潜水肿瘤表型相对应(例如增殖,
炎症,血管生成),它是监测治疗反应和
疾病进展。由于肿瘤细胞信号传导可以通过与
围绕区域微环境中的非肿瘤细胞,至关重要的是定义程度
这种串扰会影响局部组织状态,表型表达和疾病
进展。了解这些关联应有助于完善想象力的临床解释
表型改善非侵入性诊断和疾病监测指南。迫切需要
对于基于图像的放射素学工具1)预测哪些患者会对给定的治疗做出反应,2)可以
随着时间的推移观察/跟踪该响应。
总体假设:表示为细胞构成和表型组合的组织态可以是
在临床成像上解决至一个足以识别有和没有治疗的状态过渡的水平
在体内的个别患者中。
我们在该项目中的两个目标在两个单独的环境中调查了这一假设,目的是1)护理标准,目标
2)免疫疗法。在这些目标中,我们将表征表型状态的景观,建立基于图像的状态
从图像预测组织状态的模型,研究预测的肿瘤状态如何与结果相对应
量化从治疗前到治疗后状态的动态,最后建立机械模型以了解
局部表型状态空间中细胞流动的关键驱动差异,导致整体肿瘤状态。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kristin R Swanson其他文献
Image-based metric of invasiveness predicts response to adjuvant temozolomide for primary glioblastoma
基于图像的侵袭性指标可预测替莫唑胺辅助治疗原发性胶质母细胞瘤的反应
- DOI:
10.1101/509281 - 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
S. Massey;Haylye White;P. Whitmire;Tatum Doyle;S. Johnston;K. Singleton;P. Jackson;A. Hawkins;B. Bendok;A. Porter;S. Vora;J. Sarkaria;M. Mrugala;Kristin R Swanson - 通讯作者:
Kristin R Swanson
Complementary role of mathematical modeling in preclinical glioblastoma: differentiating poor drug delivery from drug insensitivity
数学模型在临床前胶质母细胞瘤中的补充作用:区分药物输送不良和药物不敏感
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
J. Urcuyo;S. Massey;A. Hawkins;B. Marin;D. Burgenske;J. Sarkaria;Kristin R Swanson - 通讯作者:
Kristin R Swanson
Response to "Tumor cells in search for glutamate: an alternative explanation for increased invasiveness of IDH1 mutant gliomas".
对“肿瘤细胞寻找谷氨酸:IDH1 突变神经胶质瘤侵袭性增加的另一种解释”的回应。
- DOI:
10.1093/neuonc/nou290 - 发表时间:
2014 - 期刊:
- 影响因子:15.9
- 作者:
Andrew D. Trister;Jacob Scott;Russell Rockne;Kevin Yagle;S. Johnston;A. Hawkins;A. Baldock;Kristin R Swanson - 通讯作者:
Kristin R Swanson
Uncertainty Quantification in Radiogenomics: EGFR Amplification in Glioblastoma
放射基因组学中的不确定性定量:胶质母细胞瘤中的 EGFR 扩增
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Leland S. Hu;Lujia Wang;A. Hawkins;Jenny M. Eschbacher;K. Singleton;P. Jackson;K. Clark;Christopher P. Sereduk;Sen Peng;Panwen Wang;Junwen Wang;L. Baxter;Kris A. Smith;Gina L. Mazza;Ashley M. Stokes;B. Bendok;Richard S. Zimmerman;C. Krishna;Alyx Porter;M. Mrugala;J. Hoxworth;Teresa Wu;Nhan L Tran;Kristin R Swanson;Jing Li - 通讯作者:
Jing Li
Kristin R Swanson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kristin R Swanson', 18)}}的其他基金
Project 1: Modeling the Interface between Non-invasive Imaging and Drug Distribution
项目 1:对无创成像和药物分配之间的接口进行建模
- 批准号:
9187652 - 财政年份:2016
- 资助金额:
$ 34.29万 - 项目类别:
Novel Tools for Evaluation and Prediction of Radiotherapy Response in Individual
评估和预测个体放射治疗反应的新工具
- 批准号:
8605773 - 财政年份:2012
- 资助金额:
$ 34.29万 - 项目类别:
Novel Tools for Evaluation and Prediction of Radiotherapy Response in Individual
评估和预测个体放射治疗反应的新工具
- 批准号:
8515534 - 财政年份:2009
- 资助金额:
$ 34.29万 - 项目类别:
E=mc2: Environment-Driven Mathematical Modeling for Clinical Cancer Imaging
E=mc2:环境驱动的临床癌症成像数学模型
- 批准号:
8555189 - 财政年份:2009
- 资助金额:
$ 34.29万 - 项目类别:
Novel Tools for Evaluation and Prediction of Radiotherapy Response in Individual
评估和预测个体放射治疗反应的新工具
- 批准号:
8123111 - 财政年份:2009
- 资助金额:
$ 34.29万 - 项目类别:
Novel Tools for Evaluation and Prediction of Radiotherapy Response in Individual
评估和预测个体放射治疗反应的新工具
- 批准号:
7730125 - 财政年份:2009
- 资助金额:
$ 34.29万 - 项目类别:
Novel Tools for Evaluation and Prediction of Radiotherapy Response in Individual
评估和预测个体放射治疗反应的新工具
- 批准号:
7905757 - 财政年份:2009
- 资助金额:
$ 34.29万 - 项目类别:
Novel Tools for Evaluation and Prediction of Radiotherapy Response in Individual
评估和预测个体放射治疗反应的新工具
- 批准号:
8309373 - 财政年份:2009
- 资助金额:
$ 34.29万 - 项目类别:
相似国自然基金
基于驾驶人行为理解的人机共驾型智能汽车驾驶权分配机制研究
- 批准号:52302494
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
有条件自动驾驶汽车驾驶人疲劳演化机理与协同调控方法
- 批准号:52372341
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
人机共驾汽车驾驶风险分析及控制权智能交互机理
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
人机共驾汽车驾驶风险分析及控制权智能交互机理
- 批准号:52272413
- 批准年份:2022
- 资助金额:54.00 万元
- 项目类别:面上项目
定性与定量分析跟驰行驶中汽车驾驶员情感-行为交互作用机理
- 批准号:71901134
- 批准年份:2019
- 资助金额:19.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Artificial Intelligence for Dynamic, individualized CPR guidance: AID CPR
人工智能提供动态、个性化的心肺复苏指导:AID CPR
- 批准号:
10644648 - 财政年份:2023
- 资助金额:
$ 34.29万 - 项目类别:
Experimental evidence on the relationship between income and health
收入与健康关系的实验证据
- 批准号:
10587123 - 财政年份:2023
- 资助金额:
$ 34.29万 - 项目类别:
Spatialomics and quantitative MRI of ischemic injury in a piglet model of Legg-Calve-Perthes disease
Legg-Calve-Perthes 病仔猪模型缺血性损伤的空间组学和定量 MRI
- 批准号:
10806492 - 财政年份:2023
- 资助金额:
$ 34.29万 - 项目类别:
Personalized risk assessment in Neurofibromatosis Type 1
1 型神经纤维瘤病的个性化风险评估
- 批准号:
10621489 - 财政年份:2023
- 资助金额:
$ 34.29万 - 项目类别: