Novel Tools for Evaluation and Prediction of Radiotherapy Response in Individual

评估和预测个体放射治疗反应的新工具

基本信息

  • 批准号:
    7730125
  • 负责人:
  • 金额:
    $ 32.95万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-08-05 至 2014-07-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Gliomas are uniformly fatal primary brain tumors, the diagnosis of which has been greatly impacted by improvements in medical imaging techniques over the last several decades. However, a significant gap remains between the obvious goal of more effective therapy and the present understanding of the dynamics of the tumor's proliferation and invasion in humans in vivo. That gap pivots on the concept that treatment of gliomas fails because of the diffuse dispersal of glioma cells throughout the neural axis even before diagnosis: the spatial and temporal evolution of which has been shown to be of quantitative and clinical importance as well as predicable with our current modeling methodology. Further, every imaging technique has a threshold of detection leaving much of the dispersed tumor invisible on imaging. The long-term objectives of this proposal are to provide new tools designed to quantify and predict the net proliferation and dispersal of glioma cells accurately enough to quantify and predict response to radiation therapy that are validated by and compared against information obtained through routine medical imaging of individual patients. The specific aims are to investigate the use of a spatio-temporal bio-mathematical model as a metric for glioma concentration, dispersal, response to radiation therapy, and location of post-treatment recurrence of individual gliomas in living patients in sufficient time to impact clinical decision making. This involves a gross but necessary assumption that medical imaging such as T1-weighted, gadolinium enhanced, T2-weighted MRI and PET imaging techniques directly correlate with disease distribution and biology. As the primary clinical window into disease progression, imaging techniques are used as benchmarks and metrics against which accuracy and success of model predictions are measured. Methods involve modern techniques and tools including, co-registration of clinical imaging, 3D radiation dose- distribution maps and the 4D patient-specific, model-simulated movie of the spatio-temporal growth and dispersal of each glioma. Comparisons are made between the model predicted invasion and therapy response patterns and that observed on follow-up imaging and, ultimately, autopsy. PUBLIC HEALTH RELEVANCE: The relevance of this proposal to public health lies in its applicability to any individual patient (and to the composition of any proposed group of "similar" patients) who has a primary brain tumor (glioma) and is being treated or is being considered for radiation therapy. Since disease progression and response to therapy are largely gauged by changes in current imaging techniques, there is an inherent limit to the clinical observation of a glioma to a "tip of the iceberg" view. Tools to predict and assess the dispersal (invasion) of gliomas cells throughout the brain in addition to the response to therapy which we cannot view on imaging is essential to the development of new and effective therapies for this uniformly fatal tumor. Specifically, as radiation therapy is targeted towards the dispersed glioma cells, peripheral to the imaging abnormality, it is necessary to calculate beyond the limits of imaging and to design mathematical models to dynamically assess that component of the tumor as well as take advantage of the tumor's proliferation rate in real time and in real patients.
描述(由申请人提供): 神经胶质瘤是统一致命的原发性脑肿瘤,在过去的几十年中,医学成像技术的改善极大地影响了其诊断。然而,在更有效的治疗的明显目标与当前对肿瘤增殖和体内人类侵袭动力学的理解之间的明显差距仍然存在。由于神经胶质瘤细胞在诊断之前的整个神经轴的弥漫性传播,因此,gap的差距是关于胶质瘤的治疗失败的概念的差异:其空间和时间演变已被证明具有定量和临床重要性,以及我们当前的建模方法具有预测性。此外,每种成像技术都有一个检测阈值,使许多分散的肿瘤在成像上看不见。该提案的长期目标是提供旨在量化和预测神经胶质瘤细胞的净增殖和分散的新工具,足以量化和预测对放射疗法的反应,并通过对单个患者的常规医学成像获得的信息进行验证和比较。具体目的是调查使用时空生物数学模型作为神经胶质瘤浓度,分散,对放射治疗的反应以及在足够时间影响临床决策的足够时间中,单个神经胶质瘤的治疗后复发的位置。这涉及一个总体但必要的假设,即医学成像,例如T1加权,增强的T2加权MRI和PET成像技术与疾病分布和生物学直接相关。作为疾病进展的主要临床窗口,成像技术被用作测量模型预测的准确性和成功的基准和指标。方法涉及现代技术和工具,包括临床成像的共同注册,3D辐射剂量分布图以及每种神经胶质瘤的时空生长和分散的4D患者特异性,模型模拟的电影。该模型预测入侵和治疗反应模式之间进行了比较,并在后续成像和最终尸检中观察到。公共卫生相关性:该提案与公共卫生的相关性在于其对任何患有原发性脑肿瘤(神经胶质瘤)的任何患者(以及任何拟议中的“类似”患者组成)​​的适用性,并且正在接受治疗或正在接受放射治疗。由于疾病的进展和对治疗的反应在很大程度上通过当前成像技术的变化来衡量,因此对神经胶质瘤的临床观察到“冰山一角”视图的固有限制。除了对疗法的反应外,我们无法在成像上观察到的胶质瘤细胞的分散(侵袭)的工具对于为这种统一致命的肿瘤开发新的有效疗法至关重要。具体而言,由于放射疗法针对分散的神经胶质瘤细胞(对成像异常的外围),因此有必要计算超出成像限制和设计数学模型以动态评估肿瘤的成分以及实时和实际患者的肿瘤的增殖率。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

暂无数据

数据更新时间:2024-06-01

Kristin R Swanson其他文献

Image-based metric of invasiveness predicts response to adjuvant temozolomide for primary glioblastoma
基于图像的侵袭性指标可预测替莫唑胺辅助治疗原发性胶质母细胞瘤的反应
  • DOI:
    10.1101/509281
    10.1101/509281
  • 发表时间:
    2019
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    S. Massey;Haylye White;P. Whitmire;Tatum Doyle;S. Johnston;K. Singleton;P. Jackson;A. Hawkins;B. Bendok;A. Porter;S. Vora;J. Sarkaria;M. Mrugala;Kristin R Swanson
    S. Massey;Haylye White;P. Whitmire;Tatum Doyle;S. Johnston;K. Singleton;P. Jackson;A. Hawkins;B. Bendok;A. Porter;S. Vora;J. Sarkaria;M. Mrugala;Kristin R Swanson
  • 通讯作者:
    Kristin R Swanson
    Kristin R Swanson
Complementary role of mathematical modeling in preclinical glioblastoma: differentiating poor drug delivery from drug insensitivity
数学模型在临床前胶质母细胞瘤中的补充作用:区分药物输送不良和药物不敏感
  • DOI:
  • 发表时间:
    2021
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    J. Urcuyo;S. Massey;A. Hawkins;B. Marin;D. Burgenske;J. Sarkaria;Kristin R Swanson
    J. Urcuyo;S. Massey;A. Hawkins;B. Marin;D. Burgenske;J. Sarkaria;Kristin R Swanson
  • 通讯作者:
    Kristin R Swanson
    Kristin R Swanson
Response to "Tumor cells in search for glutamate: an alternative explanation for increased invasiveness of IDH1 mutant gliomas".
对“肿瘤细胞寻找谷氨酸:IDH1 突变神经胶质瘤侵袭性增加的另一种解释”的回应。
  • DOI:
    10.1093/neuonc/nou290
    10.1093/neuonc/nou290
  • 发表时间:
    2014
    2014
  • 期刊:
  • 影响因子:
    15.9
  • 作者:
    Andrew D. Trister;Jacob Scott;Russell Rockne;Kevin Yagle;S. Johnston;A. Hawkins;A. Baldock;Kristin R Swanson
    Andrew D. Trister;Jacob Scott;Russell Rockne;Kevin Yagle;S. Johnston;A. Hawkins;A. Baldock;Kristin R Swanson
  • 通讯作者:
    Kristin R Swanson
    Kristin R Swanson
Uncertainty Quantification in Radiogenomics: EGFR Amplification in Glioblastoma
放射基因组学中的不确定性定量:胶质母细胞瘤中的 EGFR 扩增
  • DOI:
  • 发表时间:
    2020
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Leland S. Hu;Lujia Wang;A. Hawkins;Jenny M. Eschbacher;K. Singleton;P. Jackson;K. Clark;Christopher P. Sereduk;Sen Peng;Panwen Wang;Junwen Wang;L. Baxter;Kris A. Smith;Gina L. Mazza;Ashley M. Stokes;B. Bendok;Richard S. Zimmerman;C. Krishna;Alyx Porter;M. Mrugala;J. Hoxworth;Teresa Wu;Nhan L Tran;Kristin R Swanson;Jing Li
    Leland S. Hu;Lujia Wang;A. Hawkins;Jenny M. Eschbacher;K. Singleton;P. Jackson;K. Clark;Christopher P. Sereduk;Sen Peng;Panwen Wang;Junwen Wang;L. Baxter;Kris A. Smith;Gina L. Mazza;Ashley M. Stokes;B. Bendok;Richard S. Zimmerman;C. Krishna;Alyx Porter;M. Mrugala;J. Hoxworth;Teresa Wu;Nhan L Tran;Kristin R Swanson;Jing Li
  • 通讯作者:
    Jing Li
    Jing Li
共 4 条
  • 1
前往

Kristin R Swanson的其他基金

MOSAIC: Imaging Human Tissue State Dynamics In Vivo
MOSAIC:体内人体组织状态动态成像
  • 批准号:
    10729423
    10729423
  • 财政年份:
    2023
  • 资助金额:
    $ 32.95万
    $ 32.95万
  • 项目类别:
MOSAIC: Administrative Core
MOSAIC:行政核心
  • 批准号:
    10729421
    10729421
  • 财政年份:
    2023
  • 资助金额:
    $ 32.95万
    $ 32.95万
  • 项目类别:
MOSAIC: Biospecimen Core
MOSAIC:生物样本核心
  • 批准号:
    10729425
    10729425
  • 财政年份:
    2023
  • 资助金额:
    $ 32.95万
    $ 32.95万
  • 项目类别:
Project 1: Modeling the Interface between Non-invasive Imaging and Drug Distribution
项目 1:对无创成像和药物分配之间的接口进行建模
  • 批准号:
    9187652
    9187652
  • 财政年份:
    2016
  • 资助金额:
    $ 32.95万
    $ 32.95万
  • 项目类别:
Novel Tools for Evaluation and Prediction of Radiotherapy Response in Individual
评估和预测个体放射治疗反应的新工具
  • 批准号:
    8605773
    8605773
  • 财政年份:
    2012
  • 资助金额:
    $ 32.95万
    $ 32.95万
  • 项目类别:
Novel Tools for Evaluation and Prediction of Radiotherapy Response in Individual
评估和预测个体放射治疗反应的新工具
  • 批准号:
    8123111
    8123111
  • 财政年份:
    2009
  • 资助金额:
    $ 32.95万
    $ 32.95万
  • 项目类别:
Novel Tools for Evaluation and Prediction of Radiotherapy Response in Individual
评估和预测个体放射治疗反应的新工具
  • 批准号:
    8515534
    8515534
  • 财政年份:
    2009
  • 资助金额:
    $ 32.95万
    $ 32.95万
  • 项目类别:
E=mc2: Environment-Driven Mathematical Modeling for Clinical Cancer Imaging
E=mc2:环境驱动的临床癌症成像数学模型
  • 批准号:
    8555189
    8555189
  • 财政年份:
    2009
  • 资助金额:
    $ 32.95万
    $ 32.95万
  • 项目类别:
Novel Tools for Evaluation and Prediction of Radiotherapy Response in Individual
评估和预测个体放射治疗反应的新工具
  • 批准号:
    7905757
    7905757
  • 财政年份:
    2009
  • 资助金额:
    $ 32.95万
    $ 32.95万
  • 项目类别:
Novel Tools for Evaluation and Prediction of Radiotherapy Response in Individual
评估和预测个体放射治疗反应的新工具
  • 批准号:
    8309373
    8309373
  • 财政年份:
    2009
  • 资助金额:
    $ 32.95万
    $ 32.95万
  • 项目类别:

相似海外基金

Novel Tools for Evaluation and Prediction of Radiotherapy Response in Individual
评估和预测个体放射治疗反应的新工具
  • 批准号:
    8123111
    8123111
  • 财政年份:
    2009
  • 资助金额:
    $ 32.95万
    $ 32.95万
  • 项目类别:
Novel Tools for Evaluation and Prediction of Radiotherapy Response in Individual
评估和预测个体放射治疗反应的新工具
  • 批准号:
    8515534
    8515534
  • 财政年份:
    2009
  • 资助金额:
    $ 32.95万
    $ 32.95万
  • 项目类别:
Novel Tools for Evaluation and Prediction of Radiotherapy Response in Individual
评估和预测个体放射治疗反应的新工具
  • 批准号:
    7905757
    7905757
  • 财政年份:
    2009
  • 资助金额:
    $ 32.95万
    $ 32.95万
  • 项目类别:
Novel Tools for Evaluation and Prediction of Radiotherapy Response in Individual
评估和预测个体放射治疗反应的新工具
  • 批准号:
    8309373
    8309373
  • 财政年份:
    2009
  • 资助金额:
    $ 32.95万
    $ 32.95万
  • 项目类别:
Experimental Animal Models of TB: Chemotherapeutics and Imaging
结核病实验动物模型:化疗和影像学
  • 批准号:
    10272059
    10272059
  • 财政年份:
  • 资助金额:
    $ 32.95万
    $ 32.95万
  • 项目类别: