Methods for Enhancing Polygenic Risk Prediction Models for Complex Disease
增强复杂疾病多基因风险预测模型的方法
基本信息
- 批准号:10717244
- 负责人:
- 金额:$ 80.48万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-07-01 至 2027-04-30
- 项目状态:未结题
- 来源:
- 关键词:AddressAdoptedAfrican ancestryAreaAtrial FibrillationCardiomyopathiesCardiovascular DiseasesCardiovascular systemClinicalComplexCoronary ArteriosclerosisDNADataDevelopmentDiseaseEarly DiagnosisEarly identificationElectronic Health RecordElectronic Medical Records and Genomics NetworkEmerging TechnologiesEuropean ancestryGeneticGenetic Predisposition to DiseaseGenetic RiskGenomeGoalsHealth PersonnelHeart failureIncidenceIndividualInformaticsInvestigationLifeMachine LearningMathematicsMedicineMethodsModelingMorbidity - disease ratePhenotypePrecision HealthPreventionPrevention strategyPreventive therapyPublic HealthResearchRiskRisk FactorsScoring MethodSurveysTestingTranslatingTranslationsVariantVascular DiseasesVeteransbiobankcardiac muscle diseasecardiovascular disorder riskcardiovascular risk factorclinical careclinical decision supportclinical implementationclinical riskcohortdata integrationdeep learning modeldesigndisorder preventiondisorder riskearly screeningeffective therapyexomegenetic informationgenetic risk factorgenetic variantgenome-wideheart rhythmhigh risk populationimprovedinnovationmachine learning methodmortalitynon-geneticnovelpolygenic risk scorepredictive modelingpressureprogramsprototyperare variantresponserisk predictionrisk prediction modelsocialsocial health determinantsstatisticstraittranslational impacttranslational potentialwhole genome
项目摘要
PROJECT SUMMARY
Early screening and prevention of individuals at risk of complex diseases are important strategies for reducing
morbidity and mortality. Polygenic risk scores (PRS) are the cumulative, mathematical aggregation of risk derived
from the contributions of many DNA variants across the genome. PRS are an emerging technology in the field
of disease risk prediction and have been shown to be correlated with disease incidence. While PRS have shown
great promise for complex diseases, current PRS models are overly simplistic and have limited predictive power
and clinical utility. PRS do not account for the effects of rare genetic variants or other risk factors (clinical,
environmental, social determinants of health) on disease risk. Rare variants generally have greater effects on
disease risk due to selective pressure, but only a small number of individuals carry any single rare variant. The
sparsity of rare variants makes it difficult to directly incorporate them into PRS. Additionally, while it is known that
clinical, environmental, and social risk factors also influence risk, few analyses have successfully integrated PRS
with these important non-genetic factors.
To address this issue, we will develop novel translational informatics methods that integrate clinical,
environmental, and genetic data to improve disease risk prediction. We will assess the clinical utility of these
integrated risk prediction models using cardiovascular disease (CVD) to evaluate the potential for translation to
clinical use. Based on the complexity of CVD, we hypothesize that a comprehensive range of risk factors along
with rare variants need to be incorporated into PRS to improve the risk prediction and maximize the clinical utility
of PRS for CVD.
To achieve our goal, our specific aims are: 1) To develop novel methods that incorporate rare genetic variants
into Polygenic Risk Scores (PRS); 2) To evaluate Integrated Risk Models that combine clinical, environmental,
and social risk factors with PRS; 3) To develop and evaluate deep learning models integrating genetic, clinical,
environmental, and social risk factors; 4) To translate our integrated models into the electronic health record
(EHR). If these specific aims are achieved, we will have a set of integrated models that can be used in
downstream clinical implementation programs to ultimately have a translational impact on disease treatment and
prevention. Using these novel computational risk prediction models for precision health, along with our EHR
integration approaches, will allow for the translation of integrated risk prediction into routine clinical care.
项目摘要
早期筛查和预防具有复杂疾病风险的个体是减少的重要策略
发病率和死亡率。多基因风险评分(PR)是累积的,数学聚集的风险
根据整个基因组的许多DNA变体的贡献。 PR是该领域的新兴技术
疾病风险预测,已被证明与疾病发生率相关。虽然PR已显示
对于复杂疾病的巨大希望,当前的PRS模型过于简单,预测能力有限
和临床实用程序。 PR不考虑罕见遗传变异或其他危险因素的影响(临床,
对疾病风险的环境,社会决定因素。稀有变体通常对
疾病风险是由于选择性压力而引起的,但只有少数人携带任何稀有变体。这
稀有变体的稀疏性使得很难将它们直接纳入PR。另外,虽然知道
临床,环境和社会风险因素也会影响风险,很少有分析成功地整合了PR
与这些重要的非遗传因素。
为了解决这个问题,我们将开发新颖的翻译信息学方法来整合临床,
环境和遗传数据,以改善疾病风险预测。我们将评估这些临床实用性
使用心血管疾病(CVD)评估翻译的可能性的综合风险预测模型
临床用途。根据CVD的复杂性,我们假设沿途全面的风险因素
需要将罕见的变体纳入PR,以改善风险预测并最大化临床实用程序
CVD的PR。
为了实现我们的目标,我们的具体目的是:1)开发包含稀有遗传变异的新型方法
进入多基因风险评分(PRS); 2)评估结合临床,环境的综合风险模型
和PRS的社会风险因素; 3)开发和评估整合遗传,临床的深度学习模型,
环境和社会风险因素; 4)将我们的集成模型转化为电子健康记录
(EHR)。如果实现了这些特定目标,我们将拥有一组可以使用的集成模型
下游临床实施计划,最终对疾病治疗和
预防。使用这些新颖的计算风险预测模型,以进行精确健康以及我们的EHR
整合方法将允许将综合风险预测转化为常规临床护理。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dokyoon Kim其他文献
Dokyoon Kim的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dokyoon Kim', 18)}}的其他基金
Translational big data analytic approaches to advance drug repurposing for Alzheimer's disease
转化大数据分析方法促进阿尔茨海默氏病的药物再利用
- 批准号:
10175930 - 财政年份:2021
- 资助金额:
$ 80.48万 - 项目类别:
Translational big data analytic approaches to advance drug repurposing for Alzheimer's disease
转化大数据分析方法促进阿尔茨海默氏病的药物再利用
- 批准号:
10405522 - 财政年份:2021
- 资助金额:
$ 80.48万 - 项目类别:
Translational big data analytic approaches to advance drug repurposing for Alzheimer's disease
转化大数据分析方法促进阿尔茨海默氏病的药物再利用
- 批准号:
10613975 - 财政年份:2021
- 资助金额:
$ 80.48万 - 项目类别:
Unravelling genetic basis of comorbidity using EHR-linked biobank data
使用与 EHR 相关的生物库数据揭示合并症的遗传基础
- 批准号:
10224747 - 财政年份:2020
- 资助金额:
$ 80.48万 - 项目类别:
Unravelling genetic basis of comorbidity using EHR-linked biobank data
使用与 EHR 相关的生物库数据揭示合并症的遗传基础
- 批准号:
10034691 - 财政年份:2020
- 资助金额:
$ 80.48万 - 项目类别:
Unravelling genetic basis of comorbidity using EHR-linked biobank data
使用与 EHR 相关的生物库数据揭示合并症的遗传基础
- 批准号:
10687123 - 财政年份:2020
- 资助金额:
$ 80.48万 - 项目类别:
Unravelling genetic basis of comorbidity using EHR-linked biobank data
使用与 EHR 相关的生物库数据揭示合并症的遗传基础
- 批准号:
10460229 - 财政年份:2020
- 资助金额:
$ 80.48万 - 项目类别:
Unravelling genetic basis of comorbidity using EHR-linked biobank data
使用与 EHR 相关的生物库数据揭示合并症的遗传基础
- 批准号:
10372247 - 财政年份:2020
- 资助金额:
$ 80.48万 - 项目类别:
Integrating Neuroimaging, Multi-omics, and Clinical Data in Complex Disease
将神经影像、多组学和临床数据整合到复杂疾病中
- 批准号:
9916801 - 财政年份:2017
- 资助金额:
$ 80.48万 - 项目类别:
Integrating Neuroimaging, Multi-omics, and Clinical Data in Complex Disease
将神经影像、多组学和临床数据整合到复杂疾病中
- 批准号:
9287487 - 财政年份:2017
- 资助金额:
$ 80.48万 - 项目类别:
相似国自然基金
采用新型视觉-电刺激配对范式长期、特异性改变成年期动物视觉系统功能可塑性
- 批准号:32371047
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
破解老年人数字鸿沟:老年人采用数字技术的决策过程、客观障碍和应对策略
- 批准号:72303205
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
通过抑制流体运动和采用双能谱方法来改进烧蚀速率测量的研究
- 批准号:12305261
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
采用多种稀疏自注意力机制的Transformer隧道衬砌裂缝检测方法研究
- 批准号:62301339
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
政策激励、信息传递与农户屋顶光伏技术采用提升机制研究
- 批准号:72304103
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Defining The Role of Failed-Repair Proximal Tubule Cells in AdvancedRenal Disease in African Americans
确定修复失败的近端小管细胞在非裔美国人晚期肾病中的作用
- 批准号:
10740665 - 财政年份:2023
- 资助金额:
$ 80.48万 - 项目类别:
Psychosocial risk factors for chronic pain: Characterizing brain and genetic pathways and variation across understudied populations
慢性疼痛的心理社会危险因素:描述大脑和遗传途径以及未充分研究人群的差异
- 批准号:
10599396 - 财政年份:2022
- 资助金额:
$ 80.48万 - 项目类别:
Prevalence and temporal dynamics of clonal mutations associated with the risk of hematological cancer in a cohort of clinically healthy Nigerians
临床健康尼日利亚人队列中与血液癌风险相关的克隆突变的患病率和时间动态
- 批准号:
10490839 - 财政年份:2021
- 资助金额:
$ 80.48万 - 项目类别:
Ensuring the cultural relevance of Dietary Guidelines diet patterns among African Americans: Increasing dietary quality and reducing type 2 diabetes risk
确保非裔美国人膳食指南饮食模式的文化相关性:提高膳食质量并降低 2 型糖尿病风险
- 批准号:
10599860 - 财政年份:2021
- 资助金额:
$ 80.48万 - 项目类别:
Elucidating hereditary transthyretin-mediated heart failure risk using machine learning, polygenic risk and recall by genotype approaches in African ancestry individuals
利用机器学习、多基因风险和非洲血统个体基因型记忆方法阐明遗传性转甲状腺素蛋白介导的心力衰竭风险
- 批准号:
10563131 - 财政年份:2021
- 资助金额:
$ 80.48万 - 项目类别: