Translational big data analytic approaches to advance drug repurposing for Alzheimer's disease
转化大数据分析方法促进阿尔茨海默氏病的药物再利用
基本信息
- 批准号:10175930
- 负责人:
- 金额:$ 80.92万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-05-01 至 2026-04-30
- 项目状态:未结题
- 来源:
- 关键词:AffectAlgorithmsAlzheimer&aposs DiseaseAlzheimer&aposs disease related dementiaAlzheimer&aposs disease therapyAlzheimer’s disease biomarkerAmericanAmyloid beta-ProteinAreaBig DataBig Data MethodsBioinformaticsBiological MarkersBiomedical ResearchCellsClinicalClinical DataClinical TrialsCognitiveCommunitiesComplexCoupledDataDatabasesDiseaseDisease modelDrug CombinationsElectronic Health RecordFailureGenesGeneticGoalsGraphImageIndividualInformaticsKnowledgeKnowledge PortalLiquid substanceMachine LearningMedicineMethodsMolecularMultimodal ImagingMultiomic DataNetwork-basedOutcomePathway interactionsPharmaceutical PreparationsPharmacologyPhenotypePreventionProteinsPsychological reinforcementPublic HealthResearchResearch Project GrantsSignal TransductionSystemTherapy Clinical TrialsToxic effectTranslatingValidationWalkinganalytical methodanalytical toolanticancer researchbiomarker discoverybiomarker-drivenclinical phenotypecohortconvolutional neural networkcostdata integrationdata resourcedeep learningdrug candidatedrug developmentdrug discoverydrug repurposingdruggable targetearly detection biomarkersimprovedinformatics toolinnovationlearning strategymultiple omicsneurobiological mechanismnovelnovel strategiesphenotypic datapopulation basedpreventresponsesuccesstooltranscriptometranslational impactvirtual
项目摘要
Project Summary
Alzheimer’s disease (AD) is a major public health crisis with no available cure. Given recent failures of
many AD clinical trials, there is an urgent need for developing effective strategies to identify new AD targets for
disease modeling and new candidates for drug repurposing and development. We propose here a research
project to develop transformative big data analytic approaches in the fields of translational bioinformatics,
machine learning and deep learning to advance drug repurposing for AD. Our overarching goal is to develop
innovative machine learning and deep learning approaches as well as informatics tools and pipelines that
leverage big data in relevant biomedical domains. These big data include large-scale genetic, multi-omics,
imaging, cognitive and other phenotypic data from landmark AD studies, functional interaction data among
drugs, proteins and diseases, pharmacologic perturbation data, electronic health record data, and MarketScan
data. Our proposed computational research is aimed at developing novel translational informatics approaches
to analyze various types of molecular, clinical and other relevant data to identify individual drugs or drug
combinations with favorable efficacy and toxicity profiles as candidates for repositioning against AD or AD-
related dementia (ADRD). To achieve our goal, we have four Aims. Aim 1 is to develop network-based multi-
omics data integration methods to identify genes and pathways as novel targets for AD drug repositioning
research. Aim 2 is to develop informatics strategies to prioritize and evaluate promising candidate targets via
examining their associations with AD biomarkers and phenotypes. Aim 3 is to develop knowledge-driven drug
repurposing methods using network reinforcement and drug scoring to identify AD candidate drugs. Aim 4 is to
prioritize and evaluate the identified candidate drugs for repurposing against AD/ADRD using pharmacologic
perturbation, EHR and MarketScan data. Successful completion of these aims will produce novel translational
big data analytic methods and tools to improve our understanding of the genetic, molecular and neurobiological
mechanisms of AD, facilitate the identification of novel promising targets and drugs for repurposing, and
ultimately have a translational impact on disease treatment and prevention. These advances are fundamental
to the NIA NAPA goal of effectively treating or preventing AD/ADRD by 2025. The resulting methods and tools
are also expected to impact biomedical research in general and benefit public health outcomes.
项目摘要
阿尔茨海默氏病(AD)是主要的公共卫生危机,无法治愈。考虑到最近的失败
许多广告临床试验,迫切需要制定有效的策略来确定新的广告目标
疾病建模和新的候选药物重新利用和发育。我们在这里提出了一项研究
在翻译的生物信息学领域开发变革性的大数据分析方法的项目,
机器学习和深度学习可以推进AD的药物重新利用。我们的总体目标是发展
创新的机器学习和深度学习方法以及内容丰富的工具和管道
利用相关生物医学领域的大数据。这些大数据包括大规模遗传,多词,
来自地标广告研究的成像,认知和其他表型数据,功能相互作用数据
药物,蛋白质和疾病,药物扰动数据,电子健康记录数据和MarketScan
数据。我们提出的计算研究旨在开发新颖的翻译信息丰富的方法
分析各种类型的分子,临床和其他相关数据,以识别单独的药物或药物
结合有利效率和毒性特征作为重新定位AD或AD-的候选者的组合
相关痴呆(ADRD)。为了实现我们的目标,我们有四个目标。目标1是开发基于网络的多型
法量数据集成方法,以识别基因和途径为AD药物重新定位的新目标
研究。目标2是制定信息策略,以优先考虑和评估承诺候选目标
检查他们与AD生物标志物和表型的关联。目标3是开发知识驱动的药物
使用网络增强和药物评分来识别AD候选药物的重新利用。目标4是
使用药理学优先和评估已确定的候选药物对AD/ADRD进行重新利用
扰动,EHR和MarketScan数据。这些目标的成功完成将产生新颖的翻译
大数据分析方法和工具,以提高我们对遗传,分子和神经生物学的理解
AD的机制,促进鉴定新颖有希望的靶标和药物以重新利用,以及
最终对疾病治疗和预防产生翻译影响。这些进步是基本的
到2025年有效治疗或预防AD/ADRD的NIA NAPA目标。由此产生的方法和工具
还期望一般影响生物医学研究,并使公共卫生结果受益。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dokyoon Kim其他文献
Dokyoon Kim的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dokyoon Kim', 18)}}的其他基金
Methods for Enhancing Polygenic Risk Prediction Models for Complex Disease
增强复杂疾病多基因风险预测模型的方法
- 批准号:
10717244 - 财政年份:2023
- 资助金额:
$ 80.92万 - 项目类别:
Translational big data analytic approaches to advance drug repurposing for Alzheimer's disease
转化大数据分析方法促进阿尔茨海默氏病的药物再利用
- 批准号:
10405522 - 财政年份:2021
- 资助金额:
$ 80.92万 - 项目类别:
Translational big data analytic approaches to advance drug repurposing for Alzheimer's disease
转化大数据分析方法促进阿尔茨海默氏病的药物再利用
- 批准号:
10613975 - 财政年份:2021
- 资助金额:
$ 80.92万 - 项目类别:
Unravelling genetic basis of comorbidity using EHR-linked biobank data
使用与 EHR 相关的生物库数据揭示合并症的遗传基础
- 批准号:
10224747 - 财政年份:2020
- 资助金额:
$ 80.92万 - 项目类别:
Unravelling genetic basis of comorbidity using EHR-linked biobank data
使用与 EHR 相关的生物库数据揭示合并症的遗传基础
- 批准号:
10034691 - 财政年份:2020
- 资助金额:
$ 80.92万 - 项目类别:
Unravelling genetic basis of comorbidity using EHR-linked biobank data
使用与 EHR 相关的生物库数据揭示合并症的遗传基础
- 批准号:
10687123 - 财政年份:2020
- 资助金额:
$ 80.92万 - 项目类别:
Unravelling genetic basis of comorbidity using EHR-linked biobank data
使用与 EHR 相关的生物库数据揭示合并症的遗传基础
- 批准号:
10460229 - 财政年份:2020
- 资助金额:
$ 80.92万 - 项目类别:
Unravelling genetic basis of comorbidity using EHR-linked biobank data
使用与 EHR 相关的生物库数据揭示合并症的遗传基础
- 批准号:
10372247 - 财政年份:2020
- 资助金额:
$ 80.92万 - 项目类别:
Integrating Neuroimaging, Multi-omics, and Clinical Data in Complex Disease
将神经影像、多组学和临床数据整合到复杂疾病中
- 批准号:
9916801 - 财政年份:2017
- 资助金额:
$ 80.92万 - 项目类别:
Integrating Neuroimaging, Multi-omics, and Clinical Data in Complex Disease
将神经影像、多组学和临床数据整合到复杂疾病中
- 批准号:
9287487 - 财政年份:2017
- 资助金额:
$ 80.92万 - 项目类别:
相似国自然基金
分布式非凸非光滑优化问题的凸松弛及高低阶加速算法研究
- 批准号:12371308
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
资源受限下集成学习算法设计与硬件实现研究
- 批准号:62372198
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于物理信息神经网络的电磁场快速算法研究
- 批准号:52377005
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
考虑桩-土-水耦合效应的饱和砂土变形与流动问题的SPH模型与高效算法研究
- 批准号:12302257
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向高维不平衡数据的分类集成算法研究
- 批准号:62306119
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
- 批准号:
10462257 - 财政年份:2023
- 资助金额:
$ 80.92万 - 项目类别:
Clinical Decision Support System for Early Detection of Cognitive Decline Using Electronic Health Records and Deep Learning
利用电子健康记录和深度学习早期检测认知衰退的临床决策支持系统
- 批准号:
10603902 - 财政年份:2023
- 资助金额:
$ 80.92万 - 项目类别:
Adapt innovative deep learning methods from breast cancer to Alzheimers disease
采用从乳腺癌到阿尔茨海默病的创新深度学习方法
- 批准号:
10713637 - 财政年份:2023
- 资助金额:
$ 80.92万 - 项目类别:
Enhanced Medication Management to Control ADRD Risk Factors Among African Americans and Latinos
加强药物管理以控制非裔美国人和拉丁裔的 ADRD 风险因素
- 批准号:
10610975 - 财政年份:2023
- 资助金额:
$ 80.92万 - 项目类别:
The predicative values of vascular and metabolic disorders for risk of incident mild cognitive impairment and dementia
血管和代谢紊乱对发生轻度认知障碍和痴呆风险的预测价值
- 批准号:
10661996 - 财政年份:2023
- 资助金额:
$ 80.92万 - 项目类别: