Integrating Neuroimaging, Multi-omics, and Clinical Data in Complex Disease
将神经影像、多组学和临床数据整合到复杂疾病中
基本信息
- 批准号:9287487
- 负责人:
- 金额:$ 36.71万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-07-01 至 2022-04-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAdvanced DevelopmentAgingAlzheimer&aposs DiseaseBedsBehavioralBig DataBiologicalBiological MarkersBrainClinicalClinical DataCohort StudiesComplexDataData SetDetectionDevelopmentDiagnostic testsDisciplineDiseaseDisease ProgressionEvaluationGenesGeneticGenetic VariationGenomicsGenotypeHealthHeterogeneityIndianaIndividualInformaticsKnowledgeMachine LearningMagnetic Resonance ImagingMediatingMediationMedical ImagingMemoryMeta-AnalysisMethodsModelingMolecularMultivariate AnalysisNerve DegenerationNeurodegenerative DisordersOutcomePhenotypePositron-Emission TomographyProteomicsPublic HealthScienceStatistical MethodsStructureSusceptibility GeneTechnologyTestingTimeValidationVariantbasebiomedical informaticscohortdata integrationdiagnostic biomarkerdisease classificationendophenotypeepigenomicsgenetic associationgenetic varianthigh dimensionalityhigh riskimprovedinsightinterestlearning strategymathematical modelmetabolomicsmultimodalityneuroimagingnew therapeutic targetnovelnovel diagnosticspredict clinical outcomerare variantrisk varianttherapeutic targettranscriptomicsuser friendly software
项目摘要
ABSTRACT
Rapid progress in biomedical informatics has generated massive high-dimensional data sets (“big data”),
ranging from clinical information and medical imaging to genomic sequence data. The scale and complexity
of these data sets hold great promise, yet present substantial challenges. To fully exploit the potential
informativeness of big data, there is an urgent need to find effective ways to integrate diverse data from
different levels of informatics technologies. Existing approaches and methods for data integration to date
have several important limitations. In this project, we propose novel statistical methods and strategies to
integrate neuroimaging, multi-omics, and clinical/behavioral data sets. To increase power for association
analysis compared to existing methods, we propose a novel multi-phenotype multi-variant association
method that can evaluate the cumulative effect of common and rare variants in genes or regions of interest,
incorporate prior biological knowledge on the multiple phenotype structure, identify associated phenotypes
among multiple phenotypes, and be computationally efficient for high-dimensional phenotypes. To improve
the prediction of clinical outcomes, we propose a novel machine learning strategy that can integrate
multimodal neuroimaging and multi-omics data into a mathematical model and can incorporate prior
biological knowledge to identify genomic interactions associated with clinical outcomes. The ongoing
Alzheimer's Disease Neuroimaging Initiative (ADNI) and Indiana Memory and Aging Study (IMAS) projects
as a test bed provide a unique opportunity to evaluate/validate the proposed methods. Specific Aims: Aim 1:
to develop powerful statistical methods for multivariate tests of associations between multiple phenotypes
and a single genetic variant or set of variants (common and rare) in regions of interest, and to develop
methods for mediation analysis to integrate neuroimaging, genetic, and clinical data to test for direct and
indirect genetic effects mediated through neuroimaging phenotypes on clinical outcomes; Aim 2: to develop
a novel multivariate model that combines multi-omics and neuroimaging data using a machine learning
strategy to predict individuals with disease or those at high-risk for developing disease, and to develop a
novel multivariate model incorporating prior biological knowledge to identify genomic interactions associated
with clinical outcomes; Aim 3: to evaluate and validate the proposed methods using real data from the ADNI
and IMAS cohorts; and Aim 4: to disseminate and support publicly available user-friendly software that
efficiently implements the proposed methods. RELEVANCE TO PUBLIC HEALTH: Alzheimer's disease
(AD) as an exemplar is an increasingly common progressive neurodegenerative condition with no validated
disease modifying treatment. The proposed multivariate methods are likely to help identify novel diagnostic
biomarkers and therapeutic targets for AD. Identifying new susceptibility loci/biomarkers for AD has
important implications for gaining greater insight into the molecular mechanisms underlying AD.
抽象的
生物医学信息的快速进步产生了大量的高维数据集(“大数据”),
从临床信息和医学成像到基因组序列数据。规模和复杂性
在这些数据集中,有很大的希望,但出现了重大挑战。充分探索潜力
大数据的信息性,迫切需要寻找有效的方法来整合来自
不同水平的信息技术。迄今为止的现有方法和数据集成方法
有几个重要的局限性。在这个项目中,我们提出了新颖的统计方法和策略
综合神经影像学,多媒体和临床/行为数据集。增加关联的力量
与现有方法相比,我们提出了一种新型的多型多变量关联
可以评估普通和稀有变体在感兴趣的基因或感兴趣区域的累积效应的方法,
在多种表型结构上纳入了先前的生物学知识,识别相关的表型
在多种表型中,对于高维表型具有计算效率。改进
临床结果的预测,我们提出了一种新颖的机器学习策略,可以整合
多模式的神经影像学和多媒体数据中的数学模型,可以合并先验
生物学知识以识别与临床结果相关的基因组相互作用。正在进行的
阿尔茨海默氏病神经影像学倡议(ADNI)和印第安纳州记忆与老化研究(IMAS)项目
作为测试床提供了一个独特的机会来评估/验证所提出的方法。具体目的:目标1:
开发强大的统计方法,用于多种表型之间关联的多元测试
以及感兴趣的区域中的单个遗传变异或一组变体(常见和稀有),并发展
调解分析的方法将神经影像学,遗传和临床数据整合到直接和
通过神经影像型对临床结果介导的间接遗传作用;目标2:发展
一种新型的多元模型,使用机器学习结合了多词和神经影像学数据
预测患有疾病的人或高危疾病的策略,并发展
新颖的多元模型编码先前的生物学知识以识别相关的基因组相互作用
临床结果;目标3:使用ADNI的实际数据评估和验证提出的方法
和Imas同伙;目标4:传播和支持公开可用的用户友好软件
有效地实现了所提出的方法。与公共卫生有关:阿尔茨海默氏病
(AD)作为示例是一种日益常见的进行性神经退行性条件,未经验证
疾病修改治疗。提出的多元方法可能有助于识别新型诊断
AD的生物标志物和治疗靶标。确定广告的新敏感性局部/生物标志物
对AD基础的分子机制有更深入地了解的重要意义。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dokyoon Kim其他文献
Dokyoon Kim的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dokyoon Kim', 18)}}的其他基金
Methods for Enhancing Polygenic Risk Prediction Models for Complex Disease
增强复杂疾病多基因风险预测模型的方法
- 批准号:
10717244 - 财政年份:2023
- 资助金额:
$ 36.71万 - 项目类别:
Translational big data analytic approaches to advance drug repurposing for Alzheimer's disease
转化大数据分析方法促进阿尔茨海默氏病的药物再利用
- 批准号:
10175930 - 财政年份:2021
- 资助金额:
$ 36.71万 - 项目类别:
Translational big data analytic approaches to advance drug repurposing for Alzheimer's disease
转化大数据分析方法促进阿尔茨海默氏病的药物再利用
- 批准号:
10405522 - 财政年份:2021
- 资助金额:
$ 36.71万 - 项目类别:
Translational big data analytic approaches to advance drug repurposing for Alzheimer's disease
转化大数据分析方法促进阿尔茨海默氏病的药物再利用
- 批准号:
10613975 - 财政年份:2021
- 资助金额:
$ 36.71万 - 项目类别:
Unravelling genetic basis of comorbidity using EHR-linked biobank data
使用与 EHR 相关的生物库数据揭示合并症的遗传基础
- 批准号:
10034691 - 财政年份:2020
- 资助金额:
$ 36.71万 - 项目类别:
Unravelling genetic basis of comorbidity using EHR-linked biobank data
使用与 EHR 相关的生物库数据揭示合并症的遗传基础
- 批准号:
10224747 - 财政年份:2020
- 资助金额:
$ 36.71万 - 项目类别:
Unravelling genetic basis of comorbidity using EHR-linked biobank data
使用与 EHR 相关的生物库数据揭示合并症的遗传基础
- 批准号:
10687123 - 财政年份:2020
- 资助金额:
$ 36.71万 - 项目类别:
Unravelling genetic basis of comorbidity using EHR-linked biobank data
使用与 EHR 相关的生物库数据揭示合并症的遗传基础
- 批准号:
10460229 - 财政年份:2020
- 资助金额:
$ 36.71万 - 项目类别:
Unravelling genetic basis of comorbidity using EHR-linked biobank data
使用与 EHR 相关的生物库数据揭示合并症的遗传基础
- 批准号:
10372247 - 财政年份:2020
- 资助金额:
$ 36.71万 - 项目类别:
Integrating Neuroimaging, Multi-omics, and Clinical Data in Complex Disease
将神经影像、多组学和临床数据整合到复杂疾病中
- 批准号:
9916801 - 财政年份:2017
- 资助金额:
$ 36.71万 - 项目类别:
相似国自然基金
CTCF通过介导染色质高级结构调控非小细胞肺癌发生发展的机制研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
CTCF通过介导染色质高级结构调控非小细胞肺癌发生发展的机制研究
- 批准号:32100463
- 批准年份:2021
- 资助金额:24.00 万元
- 项目类别:青年科学基金项目
发展高级固体核磁方法探索功能材料的表界面化学
- 批准号:21922410
- 批准年份:2019
- 资助金额:120 万元
- 项目类别:优秀青年科学基金项目
TACSTD2在卵巢高级别浆液性癌发生发展中的作用及分子机制研究
- 批准号:81402157
- 批准年份:2014
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Elucidating the Role of YAP and TAZ in the Aging Human Ovary
阐明 YAP 和 TAZ 在人类卵巢衰老中的作用
- 批准号:
10722368 - 财政年份:2023
- 资助金额:
$ 36.71万 - 项目类别:
Advancing the Conversations Helpful for Awareness of Illness Trajectory (CHAT) Intervention
推进对话有助于提高疾病轨迹 (CHAT) 干预意识
- 批准号:
10668058 - 财政年份:2023
- 资助金额:
$ 36.71万 - 项目类别:
Chromatin architecture disruption and the vicious cycle of aging.
染色质结构破坏和衰老的恶性循环。
- 批准号:
10901040 - 财政年份:2023
- 资助金额:
$ 36.71万 - 项目类别:
MASS: Muscle and disease in postmenopausal women
MASS:绝经后妇女的肌肉和疾病
- 批准号:
10736293 - 财政年份:2023
- 资助金额:
$ 36.71万 - 项目类别:
Manganese dioxide as a nanozyme to mitigate oxidative stress in osteoarthritis
二氧化锰作为纳米酶可减轻骨关节炎的氧化应激
- 批准号:
10751638 - 财政年份:2023
- 资助金额:
$ 36.71万 - 项目类别: