Characterizing odor motion detection in flies
描述苍蝇气味运动检测的特征
基本信息
- 批准号:10717167
- 负责人:
- 金额:$ 188.79万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-01 至 2026-07-31
- 项目状态:未结题
- 来源:
- 关键词:AdoptedAffectAir MovementsAlzheimer&aposs DiseaseAnimalsBackBehaviorBehavioralBilateralBiological AssayBrainBrain DiseasesCaenorhabditis elegansCalciumComplexConflict (Psychology)CuesDependenceDetectionDiagnosisDiffusionDrosophila genusDrosophila melanogasterEnvironmentEnvironmental WindExhibitsFilamentGoalsHeadHumanImageImpairmentInsectaIonsKnowledgeLabelMapsMeasurementMeasuresMediatingModalityModelingMotionNeurodegenerative DisordersNeuronsOdorsOlfactory PathwaysOlfactory Receptor NeuronsParkinson DiseasePositioning AttributePropertyPunishmentResearchRewardsRoleSensorySignal TransductionSmell PerceptionSourceSpeedTrainingVisionVisual MotionWalkingbehavior influencebehavior measurementbehavioral responsecomputer frameworkconnectomedetectorexperimental studyflyinsightmathematical modelneuralneural circuitneurogeneticsneuromechanismneuronal circuitryneurotransmissionnoveloptogeneticsresponsesensory inputsource guidesspatiotemporalstatisticsvirtual
项目摘要
Many animals rely on their ability to navigate to the source of airborne odor plumes for survival. Studies dating
back a century have shown that insects combine mechanosensory and olfactory cues to navigate, surging
upwind when detecting odor but go crosswind or downwind when losing the signal. They also use bilateral
information from their two antennae to turn toward higher odor concentrations. We recently discovered that in
addition to wind direction and odor gradient, fruit flies detect the direction of motion of odors, independent of the
wind. Using optogenetics to decouple odor signal from wind, we found that flies detect odor motion using the
temporal correlations of the odor signal between their two antennae, suggesting similarities with motion detection
in vision. Manipulating spatio-temporal correlations in virtual odor signals demonstrated that flies indeed exploit
odor motion when navigating odor plumes.
The finding that Drosophila melanogaster can ‘smell’ odor motion suggests a novel role for bilateral sensing in
olfaction and raises the following questions for the field: 1) How is odor motion — a previously unappreciated
olfactory directional cue — integrated with other directional cues to drive olfactory navigation? 2) What are the
inputs to the odor motion detector and how does odor valence modulate behavioral response to odor motion? 3)
What neural circuits and computations mediate odor motion detection and how do they compare to those that
mediate visual motion detection? We will address these questions by combining optogenetic stimulation, neuron
activity measurements, and neurogenetic silencing with the behavioral and computational framework we used
to discover odor motion sensing. With this platform we can control, measure, and perturb real odor and virtual
odor signals in closed- and open-loop, during olfactory navigation of freely walking flies. Drosophila is perfectly
suited to pursue these goals because of 1) the current knowledge of the neural circuit of the olfactory periphery
and increasingly of downstream olfactory centers, and the availability of a connectome; and (2) the ability to
selectively measure and manipulate the activity of neural circuits involved in sensory processing and integration.
The finding that flies use odor motion detection to enhance odor-guided navigation reveals important gaps in our
understanding of olfactory navigation. The proposed research will close these gaps by characterizing how flies
integrate odor motion with other cues to direct olfactory behavior, and by uncovering the neural circuits and
computations that mediate odor motion detection. More broadly, these findings will advance our understanding
of neuronal circuit computations by allowing us to compare circuits that compute motion across the modalities of
olfaction and vision, which derive these signals from inputs with very different statistics and use them for different
navigational purposes.
许多动物依靠其导航到空气中气味羽流来源的能力来生存。
一个世纪前的研究表明,昆虫结合机械感觉和嗅觉线索来导航、汹涌澎湃
检测气味时逆风,但失去信号时顺风或顺风。他们也使用双边。
我们最近发现,它们的两个触角发出的信息会转向更高的气味浓度。
除了风向和气味梯度之外,果蝇还能检测气味的运动方向,与环境无关。
利用光遗传学将气味信号与风分离,我们发现苍蝇利用气味运动来检测气味。
两个触角之间气味信号的时间相关性,表明与运动检测的相似之处
操纵虚拟气味信号中的时空相关性表明,苍蝇确实利用了这一点。
导航气味羽流时的气味运动。
果蝇可以“闻到”气味运动的发现表明双边传感在
嗅觉,并为该领域提出了以下问题:1)气味运动是如何产生的——以前未被重视的一个问题
嗅觉方向提示 — 与其他方向提示集成以驱动嗅觉导航 2) 什么是嗅觉导航?
气味运动检测器的输入以及气味价如何调节对气味运动的行为反应 3)
哪些神经回路和计算介导气味运动检测以及它们与其他神经回路和计算有何比较
介导视觉运动检测?我们将通过结合光遗传学刺激、神经元来解决这些问题
活动测量以及我们使用的行为和计算框架的神经发生沉默
通过这个平台,我们可以控制、测量和扰乱真实的气味和虚拟的气味。
在果蝇自由行走的嗅觉导航过程中,闭环和开环的气味信号是完美的。
适合追求这些目标,因为 1) 目前对嗅觉周围神经回路的了解
(2) 有能力
有选择地测量和操纵参与感觉处理和整合的神经回路的活动。
苍蝇利用气味运动检测来增强气味引导导航的发现揭示了我们的重要差距
拟议的研究将通过描述苍蝇如何进行嗅觉导航来弥补这些差距。
将气味运动与其他线索结合起来以指导嗅觉行为,并通过揭示神经回路和
更广泛地说,这些发现将增进我们的理解。
通过允许我们比较跨模式计算运动的电路来进行神经电路计算
嗅觉和视觉,它们从具有非常不同的统计数据的输入中得出这些信号,并将它们用于不同的用途
导航目的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Damon Alistair Clark其他文献
Damon Alistair Clark的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Damon Alistair Clark', 18)}}的其他基金
Dissecting the roles of timing in a canonical neural computation
剖析时序在规范神经计算中的作用
- 批准号:
10205535 - 财政年份:2021
- 资助金额:
$ 188.79万 - 项目类别:
Integrating visual counterevidence to detect self-motion in a small visual circuit
整合视觉反证以检测小型视觉回路中的自我运动
- 批准号:
10388229 - 财政年份:2016
- 资助金额:
$ 188.79万 - 项目类别:
Integrating visual counterevidence to detect self-motion in a small visual circuit
整合视觉反证以检测小型视觉回路中的自我运动
- 批准号:
10604346 - 财政年份:2016
- 资助金额:
$ 188.79万 - 项目类别:
Integrating visual counterevidence to detect self-motion in a small visual circuit
整合视觉反证以检测小型视觉回路中的自我运动
- 批准号:
10205524 - 财政年份:2016
- 资助金额:
$ 188.79万 - 项目类别:
Algorithm and neural basis of a fundamental visual motion computation
基本视觉运动计算的算法和神经基础
- 批准号:
9910413 - 财政年份:2016
- 资助金额:
$ 188.79万 - 项目类别:
Algorithm and neural basis of a fundamental visual motion computation
基本视觉运动计算的算法和神经基础
- 批准号:
9079038 - 财政年份:2016
- 资助金额:
$ 188.79万 - 项目类别:
相似国自然基金
TiC-TiB2颗粒喷射成形原位合成及其对M2高速工具钢共晶碳化物形成与演化的影响
- 批准号:52361020
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
植被群落演替对河道水流结构和纵向离散特性影响机制研究
- 批准号:52309088
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
热带印度洋海表皮温日变化的数值模拟及对海气热通量的影响
- 批准号:42376002
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
SGO2/MAD2互作调控肝祖细胞的细胞周期再进入影响急性肝衰竭肝再生的机制研究
- 批准号:82300697
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
协同遥感和气候模型的城市高温热浪时空特征及其对热暴露影响研究
- 批准号:42371397
- 批准年份:2023
- 资助金额:46 万元
- 项目类别:面上项目
相似海外基金
Laryngotracheal Reconstruction with Engineered Cartilage
用工程软骨重建喉气管
- 批准号:
10660455 - 财政年份:2023
- 资助金额:
$ 188.79万 - 项目类别:
Role of serotonin brain circuit in the developmental emergence ofinnate fear
血清素脑回路在先天恐惧的发展中的作用
- 批准号:
10664638 - 财政年份:2023
- 资助金额:
$ 188.79万 - 项目类别:
Mitigation of ventilation-based resuspension and spread of airborne viruses in nosocomial and healthcare settings
减轻医院和医疗机构中基于通气的空气传播病毒的再悬浮和传播
- 批准号:
10668064 - 财政年份:2023
- 资助金额:
$ 188.79万 - 项目类别:
Effects of deep brain stimulation (DBS) on laryngeal function and associated behaviors in Parkinson Disease
深部脑刺激(DBS)对帕金森病喉功能和相关行为的影响
- 批准号:
10735930 - 财政年份:2023
- 资助金额:
$ 188.79万 - 项目类别: