Understanding the degeneration of axon and nerve terminals in Alzheimer's disease and related dementia brain
了解阿尔茨海默病和相关痴呆大脑中轴突和神经末梢的变性
基本信息
- 批准号:10661457
- 负责人:
- 金额:$ 39万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-04-01 至 2027-12-31
- 项目状态:未结题
- 来源:
- 关键词:Abeta synthesisAccelerationAlzheimer associated neurodegenerationAlzheimer&aposs DiseaseAlzheimer&aposs disease brainAlzheimer&aposs disease diagnosisAlzheimer&aposs disease modelAlzheimer&aposs disease pathologyAlzheimer&aposs disease patientAlzheimer&aposs disease related dementiaAlzheimer&aposs disease therapeuticAmyloid beta-ProteinAnimalsAxonBehaviorBehavioralBiochemicalBiochemistryBiological AssayBiologyBrainClinical TrialsCognitiveDataDegenerative DisorderDementiaDevelopmentDiseaseDisease ProgressionElectrophysiology (science)FailureFeedbackGeneticGrantHydrolaseImageImaging DeviceImpaired cognitionInterleukin-1 ReceptorsInterventionKnock-outKnowledgeLearningLightMediatingMemoryMemory LossMetabolismMolecularMonitorMusNerveNerve DegenerationNeuroimmuneNeurologicNeurologic DeficitNeuronsOnset of illnessOutcomePathogenesisPathologicPathway interactionsPlayPresynaptic TerminalsProcessProteinsRecyclingResearchResearch PersonnelResolutionRetrievalRoleSchemeSenile PlaquesSignal PathwaySignal TransductionSpecific qualifier valueSterilityStressSymptomsSynapsesTestingVesicleWorkabeta accumulationaxonal degenerationbeta amyloid pathologycognitive functioncognitive performanceexperimental studyhigh resolution imagingimprovedin vivoinsightinterestknockout geneloss of functionmouse geneticsmouse modelneural circuitneuroinflammationneuron lossneuronal cell bodynew therapeutic targetnovelnovel strategiessuperresolution imagingtooltranslational approach
项目摘要
PROJECT SUMMARY
A remarkable brain attribute is a lifelong ability to store and retrieve information for learning and memory.
Alzheimer's disease (AD) destroys this function and generates enormous personal, familial, and
societal impacts. This situation is further compounded by the lack of disease-modifying therapies and
continuous failures of the related clinical trials. An incomplete understanding of the disease has
severely limited the development of new treatments, calling for mechanistic research in AD. Synapse
loss has been a hallmark of AD and shows the most robust correlation with the disease symptoms. This
process occurs long before massive neuron death and AD diagnosis, indicating its central role in
disease pathogenesis. However, molecular mechanisms underlying synapse degeneration remain
incompletely understood. Our proposal aims to study this process by investigating a novel paradigm in
which a sarm1-dependent mechanism contributes to AD synapse loss. Sarm1 is a newly identified
NAD+ hydrolase enriched in axonal terminals, but its role in synapse degeneration in AD is entirely
unknown. We hypothesize that sarm1 plays a crucial role in AD onset and progression by inducing
axon and synapse degeneration. This hypothesis is formulated based on our preliminary data showing
that sarm1 gene knockout significantly alleviates AD mice's synaptic disruptions and cognitive
dysfunction. We will evaluate this hypothesis using new mouse models, cognitive assays, biochemistry,
electrophysiology, and super-resolution imaging. To this end, we have assembled an outstanding,
interactive team of investigators with substantial expertise in synapse biology, neurocircuitry, mouse
genetics, and AD pathology. We propose three specific aims: 1) define the role of sarm1 in memory
disruption and disease progression in AD mice; 2) evaluate sarm1 function in axon and synapse
degeneration in AD brains; 3) illustrate molecular mechanisms of sarm1 action in the context of AD
pathology and its impact on β-amyloid pathology. Through the proposed work, we will test a
fundamentally new concept essential to a long-standing question of AD—synapse loss—and
investigate sarm1-dependent signaling mechanisms in AD-associated neurodegeneration. The results
will advance the current knowledge on AD pathogenesis and provide critical insights into its novel
treatments by targeting the sarm1 signaling pathway. This proposal is submitted in accordance with the
Grant Notice to Specify Interest (NOT-AG-21-041 of PAR-22-093).
项目摘要
出色的大脑属性是存储和检索学习和记忆信息的终身能力。
阿尔茨海默氏病(AD)破坏了这一功能,并产生了巨大的个人,家庭和
社会影响。缺乏改良疾病的疗法和
相关临床试验的连续失败。对疾病的不完全了解
严重限制了新疗法的发展,要求在AD中进行机械研究。突触
损失一直是AD的标志,并且显示出与疾病症状最牢固的相关性。这
过程发生在大规模神经元死亡和AD诊断之前,表明其核心作用
疾病发病机理。但是,突触变性的基础机制仍然存在
不完全理解。我们的建议旨在通过研究一个新的范式来研究这一过程
SARM1依赖性机制有助于AD突触损失。 SARM1是新确定的
NAD+水解酶富含轴突末端,但其在AD中的突触变性中的作用完全是
未知。我们假设SARM1在AD发作中起着至关重要的作用
轴突和突触变性。该假设是根据我们的初步数据提出的
SARM1基因敲除极大地减轻了AD小鼠的突触中断和认知
功能障碍。我们将使用新的鼠标模型,认知测定,生物化学,生物化学评估这一假设
电生理学和超分辨率成像。为此,我们组装了一个杰出的
互动团队的研究人员具有突触生物学,神经记录,鼠标的大量专业知识
遗传学和AD病理学。我们提出了三个具体目标:1)定义SARM1在内存中的作用
AD小鼠的破坏和疾病进展; 2)评估轴突和突触中的SARM1功能
广告大脑的变性; 3)在AD的背景下说明了SARM1作用的分子机制
病理及其对β-淀粉样病理学的影响。通过拟议的工作,我们将测试
从根本上讲,对于长期存在的广告问题 - 节日丧失的问题至关重要的新概念
研究与AD相关神经变性中的SARM1依赖性信号传导机制。结果
将促进当前有关AD发病机理的知识,并为其新颖的批判见解
通过靶向SARM1信号通路来处理。该提案根据
赠款通知指定利息(PAR-22-093的NOT-AG-21-041)。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xuelin Lou其他文献
Xuelin Lou的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xuelin Lou', 18)}}的其他基金
ArpC3-mediated actin remodeling in insulin granule exocytosis and diabetes
ArpC3 介导的肌动蛋白重塑在胰岛素颗粒胞吐作用和糖尿病中的作用
- 批准号:
10583734 - 财政年份:2023
- 资助金额:
$ 39万 - 项目类别:
Dynamin function in pancreatic beta-cell autophagy
胰腺 β 细胞自噬中的动力功能
- 批准号:
10693338 - 财政年份:2022
- 资助金额:
$ 39万 - 项目类别:
Exocytosis-endocytosis coupling at presynaptic terminals
突触前末端的胞吐作用-内吞作用耦合
- 批准号:
9673997 - 财政年份:2018
- 资助金额:
$ 39万 - 项目类别:
Regulated exocytosis and endocytosis coupling in pancreatic endocrine cells
胰腺内分泌细胞中胞吐作用和内吞作用耦合的调节
- 批准号:
8875671 - 财政年份:2011
- 资助金额:
$ 39万 - 项目类别:
Regulated exocytosis and endocytosis coupling in pancreatic endocrine cells
胰腺内分泌细胞中胞吐作用和内吞作用耦合的调节
- 批准号:
8501443 - 财政年份:2011
- 资助金额:
$ 39万 - 项目类别:
Regulated exocytosis and endocytosis coupling in pancreatic endocrine cells
胰腺内分泌细胞中胞吐作用和内吞作用耦合的调节
- 批准号:
8690043 - 财政年份:2011
- 资助金额:
$ 39万 - 项目类别:
Regulated exocytosis and endocytosis coupling in pancreatic endocrine cells
胰腺内分泌细胞中胞吐作用和内吞作用耦合的调节
- 批准号:
8219529 - 财政年份:2011
- 资助金额:
$ 39万 - 项目类别:
Regulated exocytosis and endocytosis coupling in pancreatic endocrine cells
胰腺内分泌细胞中胞吐作用和内吞作用耦合的调节
- 批准号:
8338909 - 财政年份:2011
- 资助金额:
$ 39万 - 项目类别:
相似国自然基金
基于腔光机械效应的石墨烯光纤加速度计研究
- 批准号:62305039
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于自持相干放大的高精度微腔光力加速度计研究
- 批准号:52305621
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
位移、加速度双控式自复位支撑-高层钢框架结构的抗震设计方法及韧性评估研究
- 批准号:52308484
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
高离心加速度行星排滚针轴承多场耦合特性与保持架断裂失效机理研究
- 批准号:52305047
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
基于偏心光纤包层光栅的矢量振动加速度传感技术研究
- 批准号:62305269
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Infectious history as a determinant of age-related inflammation in Alzheimers disease
感染史是阿尔茨海默病年龄相关炎症的决定因素
- 批准号:
10663042 - 财政年份:2023
- 资助金额:
$ 39万 - 项目类别:
Dissecting the complex role of microglia states in glaucoma
剖析小胶质细胞状态在青光眼中的复杂作用
- 批准号:
10650571 - 财政年份:2023
- 资助金额:
$ 39万 - 项目类别:
Extracellular vesicles in AD-like pathology in HIV and its potential therapeutics
HIV 中 AD 样病理学中的细胞外囊泡及其潜在治疗方法
- 批准号:
10618024 - 财政年份:2023
- 资助金额:
$ 39万 - 项目类别:
Visual impairment and cognitive decline: understanding the longitudinal relationships and mechanisms
视觉障碍和认知能力下降:理解纵向关系和机制
- 批准号:
10572333 - 财政年份:2023
- 资助金额:
$ 39万 - 项目类别: