Dynamin function in beta cell autophagy
β 细胞自噬中的动力功能
基本信息
- 批准号:10473913
- 负责人:
- 金额:$ 19.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-22 至 2023-03-21
- 项目状态:已结题
- 来源:
- 关键词:AcetylationAffectAmericanAutophagocytosisBeta CellBindingBiochemicalBiochemistryBiological AssayBlood GlucoseCell LineCell physiologyCellsCellular biologyChronicDataDefectDevelopmentDiabetes MellitusDictyostelium discoideum dynamin ADietDiseaseDynaminDynamin 2Dynamin IIIEatingEndocytosisEpidemicFailureFamilyFastingFatty acid glycerol estersGenesGeneticGenetic ModelsGlucoseGuanosine Triphosphate PhosphohydrolasesImageImaging TechniquesImpairmentInsulinKnockout MiceKnowledgeLysosomesMammalsMediatingMembraneMetabolic stressMethodologyMicroscopyMicrotubulesModelingModificationMolecularMusNatureOrganOutcomePathologicPathway interactionsPharmaceutical PreparationsPhasePlayProcessProtein FamilyProtein IsoformsProteinsPublishingRecurrenceRegulationResolutionRoleSignal TransductionSourceStarvationStressStructure of beta Cell of isletTestingTherapeuticTimeTissuesTransplantationTransportationWorkconditional knockoutdesigndiabetes pathogenesisdiabeticfeedinghigh resolution imagingimaging geneticsimprovedin vivoinnovationinsightinsulin secretioninterdisciplinary approachinterestisletlive cell imagingloss of functionmouse geneticsmouse modelnovelpathogenpreservationpreventresponsetherapeutic targettraffickingtype I and type II diabetes
项目摘要
PROJECT SUMMARY
Diabetes affects over 30 million Americans, yet its epidemic is still rising at an alarming rate. The
progressive decline of pancreatic β cell function and mass is a hallmark of the disease, but no
medications prevent this decline. Interestingly, a fasting-mimicking diet known to activate autophagy
stops this decline, and it also reverses diabetes in mice. Recent progress has increasingly recognized
autophagy as a potential therapeutic target to treat diabetes because autophagy has a role in protecting
β cells against pathogens and diabetic stress. However, the fundamental nature of β cell autophagy
remains poorly understood, particularly in the molecular process governing autophagic membrane
fission. Our recent data reveal that dynamin, a family of large GTPase proteins known to regulate
endocytosis and insulin secretion, directly alters β cell autophagy. Live-cell imaging reveals that
dynamin molecules translocate to autolysosomes and drive autolysosome fission. Conditional dynamin
deletion causes striking autophagy defects in β cells. These new findings fuel tremendous interest in
understanding the molecule mechanisms at play throughout the β cell autophagy cycle. We
hypothesize that dynamin plays a direct and crucial role in β cell autophagy that has not been
characterized. Mechanistically, we suspect that dynamin regulates β cell autophagy through regulating
autolysosome fission and autophagic transport. These processes may be essential to protect β cells
against chronic metabolic stress. We have assembled a team with substantial expertise in β cell biology,
super-resolution imaging, biochemical signaling, mouse genetic models, and diabetes to test this
hypothesis. We propose three specific aims. First, we will define the role of dynamin in β cell
autolysosome fission. This fission step is necessary for autolysosome-to-lysosome transformation in
each autophagic cycle, but its mechanism remains poorly understood. We expect that β cells use
dynamin to resolve their autolysosomes into lysosomes in autophagy. Second, we will investigate how
dynamin regulates β cell microtubules to alter autophagic transport. These studies may uncover a
previously unappreciated pathway for dynamin to regulate autophagy. Third, we will examine dynamin-
regulated β cell autophagy in vivo. We have generated dynamin isoform-specific mouse models. These
unique models make it possible to evaluate dynamin-regulated β cell autophagy in vivo and its
protection against the metabolic stress of diabetes. Together, these studies will provide new insight into
the molecular regulation of β cell autophagy mediated by different dynamin isoforms. Their outcomes
will advance the fundamental understanding of β cell autophagy that profoundly impacts islet function
and diabetes pathogenesis.
项目摘要
糖尿病会影响超过3000万美国人,但其流行病仍以惊人的速度上升。这
胰腺β细胞功能和质量的进行性下降是该疾病的标志,但没有
药物阻止这种下降。有趣的是,已知会激活自噬的禁食饮食
停止这种下降,并且还逆转了小鼠的糖尿病。最近的进步已经得到认可
自噬是治疗糖尿病的潜在治疗靶点,因为自噬在保护中起作用
β细胞针对病原体和糖尿病应激。但是,β细胞自噬的基本性质
仍然了解不足,特别是在管理自噬膜的分子过程中
裂变。我们最近的数据表明,Dynamin是一个已知调节的大型GTPase蛋白的家族
内吞作用和胰岛素分泌,直接改变β细胞自噬。活电池成像揭示了
动力蛋白分子转移到自溶解体并驱动自溶性裂变。有条件的元素
缺失会导致β细胞中引人注目的自噬缺陷。这些新发现激发了人们对
了解整个β细胞自噬周期中发挥作用的分子机制。我们
假设Dynamin在β细胞自噬中起着直接而关键的作用
特征。从机械上讲,我们怀疑动力蛋白通过调节来调节β细胞自噬
自溶性裂变和自噬运输。这些过程对于保护β细胞可能至关重要
反对慢性代谢压力。我们已经组建了一个在β细胞生物学方面具有丰富专业知识的团队,
超分辨率成像,生化信号传导,小鼠遗传模型和糖尿病来测试这一点
假设。我们提出了三个具体目标。首先,我们将定义动力蛋白在β细胞中的作用
自溶性裂变。此裂变步骤对于自身溶血体到散热体转化是必需的
每个自噬循环,但其机制仍然很少理解。我们期望β细胞使用
动力蛋白将其自溶剂溶解到自噬中的溶酶体中。第二,我们将调查如何
动力蛋白调节β细胞微管以改变自噬转运。这些研究可能会发现
以前未欣赏动力蛋白调节自噬的途径。第三,我们将检查Dynamin-
调节体内的β细胞自噬。我们已经生成了Dynamin同工型特异性小鼠模型。这些
独特的模型使得在体内评估动力蛋白调节的β细胞自噬及其ITS
防止糖尿病的代谢应激。这些研究将共同提供新的见解
由不同的动力蛋白同工型介导的β细胞自噬的分子调节。他们的结果
将进步对β细胞自噬的基本理解,从而深刻影响胰岛功能
和糖尿病发病机理。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xuelin Lou其他文献
Xuelin Lou的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xuelin Lou', 18)}}的其他基金
ArpC3-mediated actin remodeling in insulin granule exocytosis and diabetes
ArpC3 介导的肌动蛋白重塑在胰岛素颗粒胞吐作用和糖尿病中的作用
- 批准号:
10583734 - 财政年份:2023
- 资助金额:
$ 19.5万 - 项目类别:
Understanding the degeneration of axon and nerve terminals in Alzheimer's disease and related dementia brain
了解阿尔茨海默病和相关痴呆大脑中轴突和神经末梢的变性
- 批准号:
10661457 - 财政年份:2023
- 资助金额:
$ 19.5万 - 项目类别:
Dynamin function in pancreatic beta-cell autophagy
胰腺 β 细胞自噬中的动力功能
- 批准号:
10693338 - 财政年份:2022
- 资助金额:
$ 19.5万 - 项目类别:
Exocytosis-endocytosis coupling at presynaptic terminals
突触前末端的胞吐作用-内吞作用耦合
- 批准号:
9673997 - 财政年份:2018
- 资助金额:
$ 19.5万 - 项目类别:
Regulated exocytosis and endocytosis coupling in pancreatic endocrine cells
胰腺内分泌细胞中胞吐作用和内吞作用耦合的调节
- 批准号:
8875671 - 财政年份:2011
- 资助金额:
$ 19.5万 - 项目类别:
Regulated exocytosis and endocytosis coupling in pancreatic endocrine cells
胰腺内分泌细胞中胞吐作用和内吞作用耦合的调节
- 批准号:
8690043 - 财政年份:2011
- 资助金额:
$ 19.5万 - 项目类别:
Regulated exocytosis and endocytosis coupling in pancreatic endocrine cells
胰腺内分泌细胞中胞吐作用和内吞作用耦合的调节
- 批准号:
8501443 - 财政年份:2011
- 资助金额:
$ 19.5万 - 项目类别:
Regulated exocytosis and endocytosis coupling in pancreatic endocrine cells
胰腺内分泌细胞中胞吐作用和内吞作用耦合的调节
- 批准号:
8219529 - 财政年份:2011
- 资助金额:
$ 19.5万 - 项目类别:
Regulated exocytosis and endocytosis coupling in pancreatic endocrine cells
胰腺内分泌细胞中胞吐作用和内吞作用耦合的调节
- 批准号:
8338909 - 财政年份:2011
- 资助金额:
$ 19.5万 - 项目类别:
相似国自然基金
海洋缺氧对持久性有机污染物入海后降解行为的影响
- 批准号:42377396
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
氮磷的可获得性对拟柱孢藻水华毒性的影响和调控机制
- 批准号:32371616
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
还原条件下铜基催化剂表面供-受电子作用表征及其对CO2电催化反应的影响
- 批准号:22379027
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
CCT2分泌与内吞的机制及其对毒性蛋白聚集体传递的影响
- 批准号:32300624
- 批准年份:2023
- 资助金额:10 万元
- 项目类别:青年科学基金项目
在轨扰动影响下空间燃料电池系统的流动沸腾传质机理与抗扰控制研究
- 批准号:52377215
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Full Project 1: Defining Mechanisms of MICAL-dependent Pancreatic Cancer Cell Migration
完整项目 1:MICAL 依赖性胰腺癌细胞迁移的定义机制
- 批准号:
10762273 - 财政年份:2023
- 资助金额:
$ 19.5万 - 项目类别:
An Inhaled Microbiome-Targeted Biotherapeutic for Treatment of COPD
一种吸入性微生物组靶向生物治疗药物,用于治疗慢性阻塞性肺病
- 批准号:
10600887 - 财政年份:2023
- 资助金额:
$ 19.5万 - 项目类别:
R-5280, A Novel Modified Superior Resistant Starch Therapy for Type 1 Diabetes
R-5280,一种针对 1 型糖尿病的新型改良优质抗性淀粉疗法
- 批准号:
10759268 - 财政年份:2023
- 资助金额:
$ 19.5万 - 项目类别:
Project 1: Defining Mechanisms of MICAL-dependent Pancreatic Cancer Cell Migration
项目 1:定义 MICAL 依赖性胰腺癌细胞迁移机制
- 批准号:
10762144 - 财政年份:2023
- 资助金额:
$ 19.5万 - 项目类别:
An Inhaled Microbiome-Targeted Biotherapeutic for Treatment of COPD
一种吸入性微生物组靶向生物治疗药物,用于治疗慢性阻塞性肺病
- 批准号:
10917559 - 财政年份:2023
- 资助金额:
$ 19.5万 - 项目类别: