Exocytosis-endocytosis coupling at presynaptic terminals
突触前末端的胞吐作用-内吞作用耦合
基本信息
- 批准号:9673997
- 负责人:
- 金额:$ 23.1万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-02-01 至 2020-01-31
- 项目状态:已结题
- 来源:
- 关键词:ActinsAction PotentialsAddressAffectAnimal GeneticsAnimal ModelAreaAuditoryBrainBrain DiseasesBrain StemCell physiologyCellsCellular biologyCerebellar Mossy FibersChemical SynapseClathrinCommunicationCouplingDataDiseaseDynaminDynamin IElectric CapacitanceElectron MicroscopyEndocytosisEndocytosis PathwayEquilibriumExocytosisFailureFire - disastersFrequenciesFunctional disorderFutureGeneticGenetic ModelsGlutamatesGoalsGuanosine Triphosphate PhosphohydrolasesHealthImageKineticsKnock-outKnockout MiceKnowledgeLaboratoriesLearningLinkMeasurementMeasuresMediatingMembraneMembrane ProteinsModelingMolecularMonitorMoodsMorphologyNatural regenerationNerveNeuronsNeurosciencesNoisePHluorinPharmacologyPhysiologicalPlayPresynaptic TerminalsProcessPropertyProteinsRecyclingReportingResearchResolutionRoleRunningSamplingSignal TransductionSurfaceSynapsesSynaptic VesiclesTechniquesTemperatureTestingTimeVesicleWorkbasebiophysical techniquesexperimental studygranule cellimprovedin vivoinhibitor/antagonistinsightmental statemouse modelpresynapticresponsestatisticstemporal measurementtime usetool
项目摘要
PROJECT SUMMARY
The long-term goal of this work is to elucidate the fundamental mechanism of exocytosis-endocytosis coupling
at the central nerve terminals. Many types of synapses routinely transmit high-frequency action potentials
through high-rate vesicle fusion at active zones. Fused synaptic vesicles and their associated proteins must be
retrieved by endocytosis. In addition to regenerating new synaptic vesicles for future use, it is critical for
balancing the surface area of the nerve terminals and maintaining intact ultrastructures. Despite decades of
extensive research, the mechanism of endocytosis at chemical synapses is not fully addressed, particularly at
physiological temperature. Strong evidence suggests that different modes of endocytosis take place in
response to different synaptic activity, and endocytosis is a few orders of magnitude slower than vesicle fusion.
However, recent morphological studies propose an ultrafast endocytosis that only occurs at a physiological
temperature and replaces other forms of endocytosis. This is an attractive model because it efficiently
minimizes the imbalance of surface area of nerve terminals during high-rate vesicle fusion. On the other hand,
this model is built on the statistics of static images of fixed synapses, and sufficient functional data are required
to test and characterize endocytosis at physiological temperature. The complete change of endocytosis
pathways into a new, clathrin-independent endocytosis mode also raises many interesting new questions.
Dynamin 1 is a large GTPase that is required for clathrin-mediate endocytosis at synapses, but its role in other
forms of endocytosis such as bulk endocytosis and ultrafast endocytosis is less clear and controversial. In this
proposal, we will address these questions by capacitance recordings from presynaptic terminals at
physiological temperature. The time-resolve capacitance measurement (Cm) has high temporal resolution and
sensitivity and thus is a suitable approach. First, we will characterize synaptic endocytosis by high time-
resolution Cm at physiological temperature. We will use the calyx of Held, a fast glutamatergic central synapse
in the auditory brainstem. We will overcome several technical limits during Cm recordings using new strategies
and extract any fast endocytosis that may be present at physiological temperature. Different synaptic activities,
including spontaneous single vesicle endocytosis, will be monitored. Secondly, we will use dynamin-1
conditional knockout mice as a valuable genetic model; its endocytosis properties at physiological temperate
will be studied in response to various synaptic activities. This should provide significant insight into dynamin 1
function in vivo. This project will advance the field a step further and address several key questions recently
raised by the rapid progress in this field. It will advance our knowledge on the kinetics and molecular
mechanism of exocytosis-endocytosis coupling at central synapses under a condition similar to in vivo, and we
expect a broad impact on cell biology of neurons and neuroscience.
项目摘要
这项工作的长期目标是阐明胞吞作用 - 细胞增多症偶联的基本机制
在中央神经末端。许多类型的突触常规传输高频动作电位
通过活性区域的高速囊泡融合。融合的突触囊泡及其相关蛋白必须是
通过内吞作用检索。除了再生新的突触囊泡以备将来使用,这对于
平衡神经末端的表面积并保持完整的超微结构。尽管数十年
广泛的研究,化学突触中内吞作用的机制尚未完全解决,尤其是在
生理温度。有力的证据表明,内吞作用的不同模式发生在
对不同的突触活性的反应和内吞作用比囊泡融合慢了几个数量级。
但是,最近的形态学研究提出了一种超快内吞作用,仅发生在生理上
温度并取代其他形式的内吞作用。这是一个有吸引力的模型,因为它有效
在高速囊泡融合过程中最小化神经末端表面积的不平衡。另一方面,
该模型建立在固定突触的静态图像的统计上,需要足够的功能数据
在生理温度下测试和表征内吞作用。内吞作用的完全改变
进入新的,无网蛋白独立的内吞作用模式的途径也提出了许多有趣的新问题。
Dynamin 1是一个大的GTPase,是在突触时网格蛋白介质内吞作用所必需的,但其在其他中的作用
内吞作用的形式,例如散装内吞作用和超快内吞作用,较清晰和有争议。在这个
提案,我们将通过突触前终端的电容记录来解决这些问题
生理温度。时间溶解电容测量(CM)具有很高的时间分辨率,并且
灵敏度,因此是一种合适的方法。首先,我们将通过高时间来表征突触性内吞作用
分辨率CM在生理温度下。我们将使用Hold的花萼,快速谷氨酸能中央突触
在听觉脑干中。我们将使用新策略在CM录音过程中克服几个技术限制
并提取在生理温度下可能存在的任何快速内吞作用。不同的突触活动,
包括自发的单囊泡内吞作用,将受到监测。其次,我们将使用Dynyin-1
有条件的敲除小鼠作为有价值的遗传模型;它在生理温度的内吞作用
将根据各种突触活动进行研究。这应该为Dynamin 1提供重要的见解1
在体内功能。该项目将进一步提高该领域,并最近解决几个关键问题
由于该领域的快速进步而提高。它将提高我们对动力学和分子的知识
在类似于体内的疾病下,中央突触处的胞吐 - 胞胞细胞增多症的机制,我们
期望对神经元和神经科学的细胞生物学产生广泛的影响。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Real-Time Endocytosis Measurements by Membrane Capacitance Recording at Central Nerve Terminals.
通过中枢神经末梢膜电容记录进行实时内吞测量。
- DOI:10.1007/978-1-4939-8719-1_8
- 发表时间:2018
- 期刊:
- 影响因子:0
- 作者:Lou,Xuelin
- 通讯作者:Lou,Xuelin
Imaging the Nanoscale Distribution of Phosphoinositides in the Cell Plasma Membrane with Single-Molecule Localization Super-Resolution Microscopy.
- DOI:10.1007/978-1-0716-1142-5_6
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:F. Fan;Chen Ji;X. Lou
- 通讯作者:F. Fan;Chen Ji;X. Lou
Vesicle Docking Is a Key Target of Local PI(4,5)P2 Metabolism in the Secretory Pathway of INS-1 Cells.
囊泡对接是 INS-1 细胞分泌途径中局部 PI(4,5)P2 代谢的关键目标。
- DOI:10.1016/j.celrep.2017.07.041
- 发表时间:2017
- 期刊:
- 影响因子:8.8
- 作者:Ji,Chen;Fan,Fan;Lou,Xuelin
- 通讯作者:Lou,Xuelin
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xuelin Lou其他文献
Xuelin Lou的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xuelin Lou', 18)}}的其他基金
ArpC3-mediated actin remodeling in insulin granule exocytosis and diabetes
ArpC3 介导的肌动蛋白重塑在胰岛素颗粒胞吐作用和糖尿病中的作用
- 批准号:
10583734 - 财政年份:2023
- 资助金额:
$ 23.1万 - 项目类别:
Understanding the degeneration of axon and nerve terminals in Alzheimer's disease and related dementia brain
了解阿尔茨海默病和相关痴呆大脑中轴突和神经末梢的变性
- 批准号:
10661457 - 财政年份:2023
- 资助金额:
$ 23.1万 - 项目类别:
Dynamin function in pancreatic beta-cell autophagy
胰腺 β 细胞自噬中的动力功能
- 批准号:
10693338 - 财政年份:2022
- 资助金额:
$ 23.1万 - 项目类别:
Regulated exocytosis and endocytosis coupling in pancreatic endocrine cells
胰腺内分泌细胞中胞吐作用和内吞作用耦合的调节
- 批准号:
8875671 - 财政年份:2011
- 资助金额:
$ 23.1万 - 项目类别:
Regulated exocytosis and endocytosis coupling in pancreatic endocrine cells
胰腺内分泌细胞中胞吐作用和内吞作用耦合的调节
- 批准号:
8690043 - 财政年份:2011
- 资助金额:
$ 23.1万 - 项目类别:
Regulated exocytosis and endocytosis coupling in pancreatic endocrine cells
胰腺内分泌细胞中胞吐作用和内吞作用耦合的调节
- 批准号:
8501443 - 财政年份:2011
- 资助金额:
$ 23.1万 - 项目类别:
Regulated exocytosis and endocytosis coupling in pancreatic endocrine cells
胰腺内分泌细胞中胞吐作用和内吞作用耦合的调节
- 批准号:
8219529 - 财政年份:2011
- 资助金额:
$ 23.1万 - 项目类别:
Regulated exocytosis and endocytosis coupling in pancreatic endocrine cells
胰腺内分泌细胞中胞吐作用和内吞作用耦合的调节
- 批准号:
8338909 - 财政年份:2011
- 资助金额:
$ 23.1万 - 项目类别:
相似国自然基金
神经系统中动作电位双稳传导研究
- 批准号:12375033
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
与痛觉相关的动作电位传导失败的动力学与调控机制
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
与痛觉相关的动作电位传导失败的动力学与调控机制
- 批准号:12202147
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
神经元离子通道-动作电位-量子化分泌关系研究
- 批准号:31930061
- 批准年份:2019
- 资助金额:303 万元
- 项目类别:重点项目
仿生味觉自适应柔性纳米电极阵列构建研究
- 批准号:61901469
- 批准年份:2019
- 资助金额:24.5 万元
- 项目类别:青年科学基金项目
相似海外基金
The contributions of excitation and contraction to muscle deterioration in a Drosophila model of CFL2 nemaline myopathy
兴奋和收缩对 CFL2 线状肌病果蝇模型肌肉退化的贡献
- 批准号:
10605858 - 财政年份:2023
- 资助金额:
$ 23.1万 - 项目类别:
Project 1 - Genes to Function: Causal Genes and their Roles in Cardiomyocyte and Atrial Physiology
项目 1 - 发挥功能的基因:因果基因及其在心肌细胞和心房生理学中的作用
- 批准号:
10646358 - 财政年份:2022
- 资助金额:
$ 23.1万 - 项目类别:
Project 1 - Genes to Function: Causal Genes and their Roles in Cardiomyocyte and Atrial Physiology
项目 1 - 发挥功能的基因:因果基因及其在心肌细胞和心房生理学中的作用
- 批准号:
10410648 - 财政年份:2022
- 资助金额:
$ 23.1万 - 项目类别:
Skeletal Muscular Swedish Mutant APP in Alzheimer's Disease Development
瑞典骨骼肌突变体 APP 在阿尔茨海默病发展中的作用
- 批准号:
10254624 - 财政年份:2021
- 资助金额:
$ 23.1万 - 项目类别:
Neuronal Cell Biology of Kv2.1-induced Endoplasmic Reticulum/Plasma Membrane Contact sites
Kv2.1 诱导的内质网/质膜接触位点的神经细胞生物学
- 批准号:
9973443 - 财政年份:2020
- 资助金额:
$ 23.1万 - 项目类别: