SBIR TOPIC 439 - ADVANCED SAMPLE PROCESSING PLATFORMS FOR DOWNSTREAM SINGLE-CELL MULTI-OMIC ANALYSIS
SBIR 主题 439 - 用于下游单细胞多组学分析的先进样品处理平台
基本信息
- 批准号:10723179
- 负责人:
- 金额:$ 39.97万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-19 至 2023-09-18
- 项目状态:已结题
- 来源:
- 关键词:AttentionAutomationBiologicalBuffersCell CountCell LineCell SeparationCell SizeCellsCentrifugationClinicalCollaborationsDataDevelopmentDigestionDissociationEnzymesErythrocytesExpression LibraryFiltrationFreezingGelGene ExpressionGenomicsGoalsHourHumanImageIndividualInterventionLibrariesLiquid substanceLiverManualsModificationMonitorMusOrganPancreasPathologyPerformancePhasePreparationProceduresProcessProtocols documentationReagentRecoveryResidual stateResortRetrievalRunningSamplingSelection CriteriaSmall Business Innovation Research GrantSolidSourceTechnologyTestingTimeTissuesTubeTumor TissueValidationVariantbasecell fixingdigitalexperimental studygene expression variationgene panelhuman tissueimage guidedimprovedmultiple omicsoperationprotocol developmenttranscriptometranscriptome sequencingtumor
项目摘要
Single cell purifications are usually needed for most single cell multiomics platforms. Unwanted cells such as dead cells, doublet, or residual red blood cells will greatly reduce the effective data. Sample preparation of solid tissues into viable, non-red blood cells consists of three major steps: tissue dissociation, clump/debris filtration and single cells purification.
Improvements been made to individual steps to enhance efficiency and reduce time. Though each step can be individually optimized to high completeness and efficiency, extensive pipetting and centrifugation operations are still required to bridge most, if not all, three steps. Therefore, the multistep, loosely monitored, attention-intensive process normally takes much longer in practice, and the material loss during the whole process can be rather high (from 10^8 to 10^4 -10^6 or
99%- 99.99%). Using Enrich TroVo technology, we believe eliminating intermediate steps while keeping all material in one place is a more effective strategy than improving the efficiency of individual steps. And we found the key of eliminating intermediate steps is to enhance the overall debris tolerance of the cell sorting process and to combine multiple purification goals into one single isolation step. Using image guided digital filter, multiple selection criteria such as viability, singularity, cell size, can be combined into one composite filter and directly applied to a complicated mixture
of tissue digests. The purpose of this proposed project is to further specialize such image-based technology into a highthroughput, application ready product. With the newly forged collaboration with Yale pathology, Enrich will be able to validate this platform using multiple clinical samples.
大多数单细胞多组学平台通常需要单细胞纯化。死细胞、双联体或残留红细胞等不需要的细胞将大大降低有效数据。将固体组织样品制备成活的非红细胞包括三个主要步骤:组织解离、团块/碎片过滤和单细胞纯化。
对各个步骤进行了改进,以提高效率并减少时间。尽管每个步骤都可以单独优化以达到高完整性和高效率,但仍然需要大量的移液和离心操作来桥接大多数(如果不是全部)三个步骤。因此,多步骤、松散监控、注意力密集的过程在实践中通常需要更长的时间,并且整个过程中的材料损失可能相当高(从 10^8 到 10^4 -10^6 或
99%- 99.99%)。我们相信,使用 Enrich TroVo 技术,消除中间步骤,同时将所有材料保留在一个地方,是比提高各个步骤的效率更有效的策略。我们发现消除中间步骤的关键是增强细胞分选过程的整体碎片耐受性,并将多个纯化目标结合到一个分离步骤中。使用图像引导数字滤波器,可以将多种选择标准(例如活力、奇异性、细胞大小)组合成一个复合滤波器,并直接应用于复杂的混合物
组织消化物。该项目的目的是进一步将这种基于图像的技术专业化为高吞吐量、应用就绪的产品。通过与耶鲁大学病理学新建立的合作,Enrich 将能够使用多个临床样本验证该平台。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ADAM BISOGNI其他文献
ADAM BISOGNI的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
参考图谱引导的罕见细胞类型自动化注释方法及生物信息学工具研究
- 批准号:32370715
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于机器学习的纸上数字式微流控生物芯片自动化设计方法
- 批准号:
- 批准年份:2019
- 资助金额:59 万元
- 项目类别:面上项目
支持动态错误恢复的流式微流控生物芯片控制与流体协同设计方法
- 批准号:61674093
- 批准年份:2016
- 资助金额:65.0 万元
- 项目类别:面上项目
一个支持多维度生物力学与生物化学表征的自动化微型流式细胞仪的开发和对于癌细胞分选的应用
- 批准号:31500758
- 批准年份:2015
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
一种高通量大尺度生物样品电镜三维重构方法的研究
- 批准号:31501160
- 批准年份:2015
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Deep Learning Assisted Scoring of Point of Care Lung Ultrasound for Acute Decompensated Heart Failure in the Emergency Department
深度学习辅助急诊室急性失代偿性心力衰竭护理点肺部超声评分
- 批准号:
10741596 - 财政年份:2023
- 资助金额:
$ 39.97万 - 项目类别:
Customizable Artificial Intelligence for the Biomedical Masses: Development of a User-Friendly Automated Machine Learning Platform for Biology Image Analysis.
面向生物医学大众的可定制人工智能:开发用于生物图像分析的用户友好的自动化机器学习平台。
- 批准号:
10699828 - 财政年份:2023
- 资助金额:
$ 39.97万 - 项目类别:
New GORDON RESEARCH CONFERENCE: Advanced Cell and Tissue Biomanufacturing: Technology Development and Innovation through Convergence
新戈登研究会议:先进细胞和组织生物制造:通过融合进行技术开发和创新
- 批准号:
10682943 - 财政年份:2023
- 资助金额:
$ 39.97万 - 项目类别:
Customizable Artificial Intelligence for the Biomedical Masses: Development of a User-Friendly Automated Machine Learning Platform for Biology Image Analysis.
面向生物医学大众的可定制人工智能:开发用于生物图像分析的用户友好的自动化机器学习平台。
- 批准号:
10699828 - 财政年份:2023
- 资助金额:
$ 39.97万 - 项目类别:
Establishing Automated Cryopreservation System for Biospecimen Storage
建立生物标本储存自动化冷冻保存系统
- 批准号:
10533660 - 财政年份:2022
- 资助金额:
$ 39.97万 - 项目类别: