Deep Learning Assisted Scoring of Point of Care Lung Ultrasound for Acute Decompensated Heart Failure in the Emergency Department
深度学习辅助急诊室急性失代偿性心力衰竭护理点肺部超声评分
基本信息
- 批准号:10741596
- 负责人:
- 金额:$ 35.8万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-07-15 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:Accident and Emergency departmentAcuteAddressAdmission activityAlgorithmsAttentionAutomationBedsBiological MarkersBlood TestsCOVID-19COVID-19 pandemicCaringClinicalClinical MarkersClinical ResearchClinical assessmentsClipComputing MethodologiesCongestive Heart FailureCorrelation StudiesCritical IllnessDataDecision MakingDependenceDetectionDevicesDiagnosisEmergency CareEmergency Department PhysicianEtiologyEvaluationFunctional disorderFundingGoalsGrantHeart failureHospitalizationHospitalsHourHumanImageInpatientsLaboratoriesLengthLength of StayLungManualsMeasuresMethodsModelingMulti-Institutional Clinical TrialNursing StaffObservational StudyOutcomePatient AdmissionPatient CarePatient-Focused OutcomesPatientsPerformancePhysical ExaminationPhysiciansProviderPublic HealthRecording of previous eventsRoleSensitivity and SpecificitySeveritiesSeverity of illnessSpecialistStandardizationTherapeutic InterventionThoracic RadiographyTimeTrainingUltrasonographyUnited States National Institutes of HealthVariantcare outcomesclinical careclinical examinationcognitive loadcohortcomputerized toolsdeep learningexperienceimprovedinpatient servicemortalitynew technologynovelnovel therapeuticspandemic diseaseparticipant enrollmentpoint of carepreventprognostic valueprospectiveresearch studyskillstoolultrasoundward
项目摘要
Since the onset of the COVID-19 pandemic, the practice of “boarding” patients admitted to the hospital in the
Emergency Department (ED) has reached unprecedented levels. For critically ill patients including those with
acute decompensated heart failure (ADHF), ED boarding worsens outcomes as patients spend hours in the ED
waiting to be transferred to the appropriate inpatient ward for specialized care. Given the unabated increase in
ED boarding, length of ED stay, and subsequent time to specialist evaluation and management, developing new
technologies to enable rapid reassessment of ADHF patients during these protracted ED stays is critical for
improved care and patient outcomes. In a typical workflow in the Emergency Department, physicians perform
bedside lung ultrasound once, at time of initial patient presentation, and use the presence or absence of ‘B-
Lines’ in the images as a biomarker for pulmonary congestion. Often assessed by ED physicians in a binary
manner, the presence of B-lines is used in conjunction with a clinical exam and blood tests to rule in acute ADHF.
While detecting B-lines can be as easy as looking at two lung zones to make a clinical decision of ADHF, counting
B-lines requires both skill and training in B-line identification, and in aggregating B-line counts over 8+ lung
zones for accuracy. For a busy ED physician this is prohibitive given constraints on time, training, and cognitive
load. To ease this problem, ED physicians need tools that can automatically count and aggregate the B-lines to
quantify the severity of the congestion. Without this automation, it is entirely possible that either suboptimal or
even no treatment will be initiated for ADHF patients in the ED leading to increased hospital length of stay, further
perpetuating the ED boarding. The creation of tools for automatic quantification has the potential to enable
workflows with reassessment to meet the changing patient care needs. Our long-term goals are to develop
computational tools that mitigate the operator-dependence endemic to ultrasound image acquisition and
interpretation. The objective of this Trailblazer R21 application is to develop and validate computational methods
for quantifying pulmonary congestion from bedside lung ultrasound in the ED, which will be achieved by (1)
developing and evaluating explainable tools for automated quantification of pulmonary congestion using
retrospective lung ultrasound data and (2) validating the performance of the trained models in a workflow
demonstrated by a prospective observational study in which patients presenting to the ED with ADHF will be
assessed with lung ultrasound both pre-and post-therapeutic intervention, and findings typically used to measure
pulmonary congestion on inpatient services will be recorded for both time points.
自COVID-19大流行爆发以来,医院收治的患者“寄宿”的做法
急诊科(ED)对于重症患者(包括患有以下疾病的患者)的治疗达到了前所未有的水平。
急性失代偿性心力衰竭 (ADHF)、急诊室寄宿会导致结果恶化,因为患者要在急诊室呆上几个小时
鉴于人数有增无减,等待转移到适当的住院病房接受专门护理。
急诊室寄宿、急诊室住院时间以及随后接受专家评估和管理的时间,制定新的
在这些长期急诊室住院期间能够快速重新评估 ADHF 患者的技术对于
在急诊科的典型工作流程中,医生执行的任务是改善护理和患者治疗效果。
床边肺部超声检查一次,在患者初次就诊时进行,并使用是否存在“B-”
图像中的线条作为肺充血的生物标志物,通常由急诊医生以二元法进行评估。
以这种方式,B 线的存在与临床检查和血液检查结合使用来诊断急性 ADHF。
虽然检测 B 线可以像查看两个肺部区域一样简单,以做出 ADHF 的临床决策,但
B 线需要 B 线识别以及汇总超过 8 个肺的 B 线计数的技能和培训
对于忙碌的急诊医生来说,鉴于时间、培训和认知的限制,这是令人望而却步的。
为了缓解这个问题,急诊医生需要能够自动计数和汇总 B 线的工具。
量化拥塞的严重程度 如果没有这种自动化,则完全有可能出现次优或拥塞的情况。
即使急诊室不会对 ADHF 患者进行任何治疗,也会导致住院时间延长,进一步
自动量化工具的创建有可能使 ED 登机永久化。
重新评估工作流程以满足不断变化的患者护理需求。我们的长期目标是发展。
计算工具可减轻超声图像采集对操作员的依赖,
Trailblazer R21 应用程序的目标是开发和验证计算方法。
用于通过急诊科床旁肺部超声量化肺充血,这将通过以下方式实现:(1)
开发和评估可解释的工具,用于自动量化肺充血
回顾性肺部超声数据以及 (2) 在工作流程中验证训练模型的性能
通过一项前瞻性观察研究,在该研究中,患有 ADHF 的患者将被送往急诊科
在治疗干预前和治疗后用肺部超声进行评估,以及通常用于测量的结果
将记录两个时间点住院服务中的肺充血情况。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andrew Goldsmith其他文献
Andrew Goldsmith的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
巨噬细胞Nogo-B通过FABP4/IL-18/IL-18R调控急性肝衰竭的分子机制研究
- 批准号:82304503
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
α7nAChR激动剂通过PGC-1α和HO-1调控肾小管上皮细胞线粒体的质和量进而改善脓毒症急性肾损伤的机制研究
- 批准号:82372172
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于解郁散热“把好气分关”探讨代谢-炎症“开关”A2BR在急性胰腺炎既病防变中的作用与机制
- 批准号:82374256
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
RacGAP1介导细胞核-线粒体对话在急性肾损伤中促进肾小管上皮细胞能量平衡的作用机制研究
- 批准号:82300771
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
开窍寒温配伍调控应激颗粒铁离子富集水平抗急性缺血性卒中铁死亡损伤的机制研究
- 批准号:82374209
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Improving care transitions for Veterans withsocial needs
改善有社会需求的退伍军人的护理过渡
- 批准号:
10638723 - 财政年份:2023
- 资助金额:
$ 35.8万 - 项目类别:
Treating Drivers of Suicide in Primary Care using Jaspr Health TABA Supplement
使用 Jaspr Health TABA 补充剂治疗初级保健中的自杀驱动者
- 批准号:
10805635 - 财政年份:2023
- 资助金额:
$ 35.8万 - 项目类别:
COVID-19 Pandemic-related Changes in the Child Tax Credit and Effects on Behavioral Health for Medicaid-enrolled Adolescents
与 COVID-19 大流行相关的儿童税收抵免变化及其对参加医疗补助的青少年行为健康的影响
- 批准号:
10686628 - 财政年份:2023
- 资助金额:
$ 35.8万 - 项目类别:
Development of a regional anesthesia guidance system to increase patient access to opioid-sparing analgesia for hip fracture pain
开发区域麻醉引导系统,以增加患者获得髋部骨折疼痛的阿片类药物保留镇痛的机会
- 批准号:
10759550 - 财政年份:2023
- 资助金额:
$ 35.8万 - 项目类别:
Examining the effects of Global Budget Revenue Program on the Costs and Quality of Care Provided to Cancer Patients Undergoing Chemotherapy
检查全球预算收入计划对接受化疗的癌症患者提供的护理成本和质量的影响
- 批准号:
10734831 - 财政年份:2023
- 资助金额:
$ 35.8万 - 项目类别: