The NOTCH Signaling Pathway in Large Vessel Vasculitis
大血管炎中的 NOTCH 信号通路
基本信息
- 批准号:10655562
- 负责人:
- 金额:$ 59.88万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-01-06 至 2026-06-30
- 项目状态:未结题
- 来源:
- 关键词:AffectAmplifiersAneurysmAortaAortic AneurysmAortic Arch SyndromesAortitisArteriesAutoimmuneAutoimmune DiseasesAutomobile DrivingBiological ModelsBlindnessBlood VesselsCD4 Positive T LymphocytesCell Differentiation processCell physiologyCellsChimera organismCitric Acid CycleClinicalComplicationCytokinesisDNA DamageDataDefectDevelopmentDiseaseDissectionEffector CellElectron TransportEndothelial CellsEngraftmentEnzymesEventExperimental DesignsGiant CellsGranulomatous ArteritisHumanHyperplasiaIL17 geneImmuneImmune responseImmune systemImmunityIn VitroInfiltrationInflammatoryInflammatory InfiltrateInterferonsKetoglutarate Dehydrogenase ComplexLifeMacrophageMapsMeasuresMedialMediatingMessenger RNAMetabolicMitochondriaModificationMolecularMusNF-kappa BNOTCH1 geneNotch Signaling PathwayNuclearOncogenesOrganParalysedPathogenicityPathologicPathway interactionsPatientsPhenotypePopulationProcessProcollagen-Proline DioxygenaseProductionProliferatingProteinsRNARNA-Binding ProteinsResourcesRoleSecond Messenger SystemsSignal TransductionSiteStrokeSuccinate DehydrogenaseSuccinatesT-LymphocyteTNF geneTemporal ArteritisTestingThinnessTissuesTrainingVascular Endothelial CellVascularizationVasculitisVeno-Occlusive DiseaseWorkangiogenesisautoinflammatory diseasesbench to bedsidecell motilitycohorteffector T cellexperimental studyin vivoin vivo Modelinhibitorinterleukin-21interleukin-22loss of functionmRNA Stabilitymouse modelnew technologynotch proteinnovel markernovel therapeutic interventionnuclear divisionprogramsresponsetherapeutic targettranscription factorvascular inflammation
项目摘要
Project Summary
Giant Cell Arteritis (GCA) is an autoimmune and autoinflammatory disease which targets the aorta and its major
branch vessels. GCA causes vaso-occlusive disease, leading to blindness and stroke. About half of the patients
develop GCA aortitis, a potentially life-threatening complication due to aortic dissection and aneurysm formation.
The underlying disease process is a granulomatous arteritis, with CD4 T cells, macrophages and multinucleated
giant cells infiltrating into the vessel wall, eliciting maladaptive wall remodeling with neoangiogenesis and lumen-
occlusive intimal hyperplasia.
We have identified aberrant expression of the oncogene NOTCH1 in CD4 T cells as a key abnormality in the
immune system of GCA patients. Here, we will examine the hypothesis that NOTCH signaling transforms
protective immunity into pathogenic immunity by suppressing the mitochondrial enzyme succinate
dehydrogenase (SDH) and truncating the tricarboxylic acid (TCA) cycle. Fragmentation of the TCA cycle
then leads to the accumulation of the metabolic intermediate succinate, which is released into the tissue
site and functions as a second messenger. We propose that succinate secreted by NOTCH1hi SDHlo CD4
T cells targets surrounding cells to redirect T effector cell differentiation, to induce multinucleated
macrophages and to promote microvascular neoangiogenesis. We have assembled key enabling resources
to mechanistically study how NOTCH-instructed succinate release enhances vascular inflammation; including a
large cohort of clinically well phenotyped GCA patients and a chimeric mouse model in which vasculitis is induced
in engrafted human arteries to corroborate in vitro data by in vivo studies. Aim 1 will define the molecular
mechanisms leading to NOTCH-dependent SDH loss-of-function, building on preliminary studies that implicate
RNA-binding proteins in regulating SDH mRNA stability through N6-methyladenosine modifications. Aim 2A
examines mechanistically how succinate reprograms T effector cell differentiation. Experiments are designed to
investigate how succinate paralyzes the NF-kappaB inhibitor A20/TNFAIP3 to unleash NF-kappaB signaling and
induce polyfunctional effector T cells (Thpoly), including T cells that co-produce IFN-, IL-17, TNF-α, IL-21 and
IL-22. Aim 2B will determine how NOTCH-instructed succinate alters macrophage function, specifically by
driving formation of tissue-destructive multinucleated giant cells. We will delineate how succinate elicits a robust
DNA damage response and how it promotes nuclear division and halts cytokinesis by interfering with the spindle
assembly checkpoint. Aim 2C is focused on succinate’s role in inducing a pro-angiogenic endothelial cell (EC)
phenotype and will explore how succinate-trained EC migrate, proliferate, and lose their barrier function. Aim 3
will bridge from the bench to the bedside and will test whether the suppression of succinate production by
blocking the upstream enzyme a-ketoglutarate dehydrogenase can successfully treat vasculitis in vivo.
项目概要
巨细胞动脉炎(GCA)是一种自身免疫性和自身炎症性疾病,以主动脉及其主要部位为靶点。
GCA 会导致血管闭塞性疾病,导致大约一半的患者失明和中风。
发展为 GCA 主动脉炎,这是一种由于主动脉夹层和动脉瘤形成而可能危及生命的并发症。
潜在的疾病过程是肉芽肿性动脉炎,伴有 CD4 T 细胞、巨噬细胞和多核细胞
巨细胞浸润到血管壁,引起适应不良的血管壁重塑,新生血管生成和管腔
闭塞性内膜增生。
我们已经确定 CD4 T 细胞中癌基因 NOTCH1 的异常表达是 CD4 T 细胞中的一个关键异常。
在这里,我们将检验 NOTCH 信号传导转变的假设。
通过抑制线粒体琥珀酸酶将保护性免疫转变为致病性免疫
脱氢酶 (SDH) 和截断三羧酸 (TCA) 循环 TCA 循环的碎片化。
然后导致代谢中间体琥珀酸盐的积累,并释放到组织中
我们认为琥珀酸是由 NOTCH1hi SDHlo CD4 分泌的。
T 细胞靶向周围细胞以重定向效应 T 细胞分化,诱导多核
巨噬细胞和促进微血管新生血管生成我们已经聚集了关键的支持资源。
从机制上研究 NOTCH 指示的琥珀酸释放如何增强血管炎症,包括
大量临床良好表达的 GCA 患者和诱导血管炎的嵌合小鼠模型
在移植的人类动脉中通过体内研究证实体外数据,目的 1 将定义分子。
导致 NOTCH 依赖性 SDH 功能丧失的机制,建立在涉及
RNA 结合蛋白通过 N6-甲基腺苷修饰调节 SDH mRNA 稳定性。
从机制上研究琥珀酸如何重新编程 T 效应细胞分化。
研究琥珀酸如何麻痹 NF-kappaB 抑制剂 A20/TNFAIP3 以释放 NF-kappaB 信号传导并
诱导多功能效应 T 细胞 (Thpoly),包括共同产生 IFN-α、IL-17、TNF-α、IL-21 和
IL-22。目标 2B 将确定 NOTCH 指导的琥珀酸如何改变巨噬细胞功能,特别是通过
驱动组织破坏性多核巨细胞的形成我们将描述琥珀酸如何引发强健的细胞。
DNA 损伤反应及其如何通过干扰纺锤体促进核分裂和停止胞质分裂
目标 2C 重点关注琥珀酸在诱导促血管生成内皮细胞 (EC) 中的作用。
表型并将探索琥珀酸训练的 EC 如何迁移、增殖和丧失其屏障功能 Aim 3。
将从实验室到临床进行桥梁,并测试是否会抑制琥珀酸的产生
阻断上游酶α-酮戊二酸脱氢酶可以成功治疗体内血管炎。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Visual manifestations in giant cell arteritis: trend over 5 decades in a population-based cohort.
- DOI:10.3899/jrheum.140188
- 发表时间:2015-02
- 期刊:
- 影响因子:0
- 作者:Singh AG;Kermani TA;Crowson CS;Weyand CM;Matteson EL;Warrington KJ
- 通讯作者:Warrington KJ
Giant cell arteritis: immune and vascular aging as disease risk factors.
- DOI:10.1186/ar3358
- 发表时间:2011-08-02
- 期刊:
- 影响因子:4.9
- 作者:Mohan SV;Liao YJ;Kim JW;Goronzy JJ;Weyand CM
- 通讯作者:Weyand CM
Dynamic immune cell accumulation during flow-induced atherogenesis in mouse carotid artery: an expanded flow cytometry method.
- DOI:10.1161/atvbaha.111.242180
- 发表时间:2012-03
- 期刊:
- 影响因子:0
- 作者:Alberts-Grill N;Rezvan A;Son DJ;Qiu H;Kim CW;Kemp ML;Weyand CM;Jo H
- 通讯作者:Jo H
Telomere dysfunction, autoimmunity and aging.
- DOI:
- 发表时间:2011-06
- 期刊:
- 影响因子:7.4
- 作者:P. Hohensinner;J. Goronzy;C. Weyand
- 通讯作者:P. Hohensinner;J. Goronzy;C. Weyand
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Cornelia M. Weyand其他文献
Commentary Ectopic Lymphoid Organogenesis A Fast Track for Autoimmunity
异位淋巴器官发生是自身免疫的快车道
- DOI:
- 发表时间:
2001 - 期刊:
- 影响因子:0
- 作者:
Cornelia M. Weyand;P. Kurtin - 通讯作者:
P. Kurtin
Pathogenese der Vaskulitis mittlerer und großer Gefäße
中小血管炎和大血管炎的病原体
- DOI:
- 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
Cornelia M. Weyand;Jörg J. Goronzy - 通讯作者:
Jörg J. Goronzy
Giant cell arteritis: new concepts in pathogenesis and implications for management.
巨细胞动脉炎:发病机制的新概念及其对治疗的影响。
- DOI:
- 发表时间:
1997 - 期刊:
- 影响因子:0
- 作者:
Cornelia M. Weyand;G. Bartley - 通讯作者:
G. Bartley
Cornelia M. Weyand的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Cornelia M. Weyand', 18)}}的其他基金
Metabolic Regulation of Inflammatory Immune Responses in Cardiovascular Disease
心血管疾病炎症免疫反应的代谢调节
- 批准号:
9978626 - 财政年份:2016
- 资助金额:
$ 59.88万 - 项目类别:
The NOTCH Signaling Pathway in Large Vessel Vasculitis
大血管炎中的 NOTCH 信号通路
- 批准号:
10316892 - 财政年份:2014
- 资助金额:
$ 59.88万 - 项目类别:
The NOTCH Signaling Pathway in Large Vessel Vasculitis
大血管炎中的 NOTCH 信号通路
- 批准号:
8629407 - 财政年份:2014
- 资助金额:
$ 59.88万 - 项目类别:
The NOTCH Signaling Pathway in Large Vessel Vasculitis
大血管炎中的 NOTCH 信号通路
- 批准号:
10477434 - 财政年份:2014
- 资助金额:
$ 59.88万 - 项目类别:
The NOTCH Signaling Pathway in Large Vessel Vasculitis
大血管炎中的 NOTCH 信号通路
- 批准号:
8789332 - 财政年份:2014
- 资助金额:
$ 59.88万 - 项目类别:
DNA Repair and Mitochondrial Dysfunction in T Cell Aging
T 细胞衰老过程中的 DNA 修复和线粒体功能障碍
- 批准号:
10543729 - 财政年份:2013
- 资助金额:
$ 59.88万 - 项目类别:
相似国自然基金
微波敏感型铁死亡纳米放大器的构建及其增敏肝癌消融-免疫联合治疗的应用与机制研究
- 批准号:82302368
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于太赫兹行波管放大器的高效率多路功率合成技术的研究
- 批准号:62371102
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
紧凑型大功率微波速调管放大器研究
- 批准号:62371108
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于SISL的三维集成封装宽带高效率功率放大器研究
- 批准号:62301387
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
具有多电流合成结点的新型功率放大器架构及智能设计技术研究
- 批准号:62371077
- 批准年份:2023
- 资助金额:53 万元
- 项目类别:面上项目
相似海外基金
SBIR Phase II: Thermally-optimized power amplifiers for next-generation telecommunication and radar
SBIR 第二阶段:用于下一代电信和雷达的热优化功率放大器
- 批准号:
2335504 - 财政年份:2024
- 资助金额:
$ 59.88万 - 项目类别:
Cooperative Agreement
Interferometric and Multiband optical Parametric Amplifiers for Communications (IMPAC)
用于通信的干涉式和多频带光学参量放大器 (IMPAC)
- 批准号:
EP/X031918/1 - 财政年份:2024
- 资助金额:
$ 59.88万 - 项目类别:
Fellowship
Josephson Parametric Amplifiers using CVD graphene junctions
使用 CVD 石墨烯结的约瑟夫森参量放大器
- 批准号:
EP/Y003152/1 - 财政年份:2024
- 资助金额:
$ 59.88万 - 项目类别:
Research Grant
大電流加速器を利用した加速器高速中性子による医療用放射性同位元素の合成研究
利用大电流加速器的加速器快中子合成医用放射性同位素的研究
- 批准号:
23K21830 - 财政年份:2024
- 资助金额:
$ 59.88万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Miniature and integrable balun for light-weight and flexible MRI RF coils
用于轻型、灵活 MRI 射频线圈的微型、可集成巴伦
- 批准号:
10640644 - 财政年份:2023
- 资助金额:
$ 59.88万 - 项目类别: