Statistical and Machine Learning Methods to Improve Dynamic Treatment Regimens Estimation Using Real World Data
使用真实世界数据改进动态治疗方案估计的统计和机器学习方法
基本信息
- 批准号:10654927
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-04-01 至 2023-08-27
- 项目状态:已结题
- 来源:
- 关键词:Academic Medical CentersAccelerationAchievementAddressAdherenceAdverse eventAffectAlgorithmsAmericanAtherosclerosisBenefits and RisksCenter for Translational Science ActivitiesChronic Kidney FailureClinical TrialsComplementComputer softwareDataData SetDatabasesDecision MakingDiabetes MellitusDimensionsDisadvantagedDiseaseEffectivenessElectronic Health RecordEnsureEpidemicEquilibriumExclusionFeedbackFundingGoalsGuidelinesHealth StatusHypoglycemiaIndividualInequalityJointsLeadLearningLengthMaintenanceManaged CareMedicalMedical centerMethodsModelingNon-Insulin-Dependent Diabetes MellitusObesityObservational StudyOhioOutcomePatient CarePatient PreferencesPatientsPatternPerformancePopulationPopulation DistributionsPopulation HeterogeneityProceduresProcessPublic HealthQuality ControlRandomized, Controlled TrialsRecommendationRiskSafetySample SizeSamplingSelection BiasStatistical MethodsSurveysTimeTreatment ProtocolsUncertaintyUniversitiesUpdatealgorithm developmentcardiovascular disorder riskclinical decision-makingclinical practicecohortcomorbiditycost efficientdata modelingdisease registryefficacy outcomesfeature selectionimprovedindividual patientindividualized medicineinsightknowledge baselearning algorithmlearning strategymachine learning algorithmmachine learning methodmethod developmentnoveloptimal treatmentspatient orientedpatient populationpersonalized carepersonalized decisionprecision medicinepreferenceprospectivesemiparametricside effectsimulationsocial health determinantssoftware developmentstatistical and machine learningstatistical learningtheoriestooltranslational clinical trialtreatment choicetreatment effecttreatment guidelinestreatment patterntreatment strategy
项目摘要
Project Summary/Abstract
Type 2 diabetes (T2D) is a global epidemic affecting approximately 462 million individuals world-wide. Cur-
rent medical treatment guidelines rely largely on data from randomized controlled trials (RCTs) that study average
effects, which is far from adequate for making individualized decisions for real world patients. This limitation is
even worse for discovering dynamic treatment regimens (DTRs) in a heterogeneous population where treatment
decisions are made over one or more stages of disease course. This limitation can be partially addressed by sup-
plementing RCT data with real world data (RWD), such as disease registries, prospective observational studies,
surveys and electronic health records, to improve medical decision making. Despite of the promise of combining
RWD and RCT, there are several significant challenges in method and algorithm development. These include
lack of generalizability or practical utility for the findings from RCTs when applied to real world patients; bias due
to unobserved confounders; and concern about long-term side effects/risks. This proposal aims to address each
of these challenges. Specifically, in Aim 1, we address the generalizability issue by proposing a novel framework
that uses evidence from RWD to improve learning DTRs in the trials. The framework uses RWD to select infor-
mative tailoring features, balance population distributions and improve statistical efficiency through doubly robust
estimation. In Aim 2, to improve the practical utility of DTRs, we propose a robust method to first infer individual
treatment choice/preference from RWD, then incorporate this estimated preference into learning DTRs using the
trial data. The resulting DTRs are not only statistically valid but also compatible with patient/clinician preference
in real world populations. In Aim 3, to lessen the bias due to hidden confounders in RWD, we propose joint
semiparametric models to combine the trial data with RWD; the models we propose allow different magnitudes
of treatment effect sizes and control for possible bias due to hidden confounders in RWD. In Aim 4, to address
the concern about long-term risks, we consider a general procedure for estimating DTRs that maximizes efficacy
outcomes while ensuring that long-term side effects associated with the recommended DTRs remain below a
certain threshold. We then propose a novel simultaneous learning algorithm to estimate the optimal DTRs across
all stages. For all four aims, we will provide rigorous assumptions and theoretical justifications using tools from
concentration inequalities, statistical learning theory, empirical processes and semiparametric inference. We will
conduct extensive simulation studies to study the performance of the proposed approaches in a variety of set-
tings, and compare their performance with off-the-shelf methods. We will apply the proposed methods to estimate
DTRs for T2D using clinical trial data and RWD taken from electronic health records in Columbia University and
Ohio State University medical centers as well as Allof Us precision medicine study. Our methods and findings will
be publicized through software development; the software will receive frequent updates based on user feedback.
项目摘要/摘要
2型糖尿病(T2D)是一种全球流行病,影响了全球约4.62亿个人。 cur
租金医疗指南主要依赖于研究平均研究的随机对照试验(RCT)的数据
效果,这远远不足以为现实世界患者做出个性化决策。这个限制是
在异质种群中发现动态治疗方案(DTR)的情况更糟
决定在一个或多个疾病过程中做出决定。此限制可以由SUP-部分解决
使用现实世界数据(RWD)(例如疾病登记,前瞻性观察研究)来使RCT数据配置
调查和电子健康记录,以改善医疗决策。尽管有合并的承诺
RWD和RCT,方法和算法开发中存在一些重要的挑战。这些包括
当应用于现实世界患者时,RCT的发现缺乏通用性或实用性;偏见应得
未观察到的混杂因素;并担心长期副作用/风险。该建议旨在解决每个建议
这些挑战。在AIM 1中,我们通过提出一个新颖的框架来解决普遍性问题
这使用RWD的证据来改善试验中的学习DTR。该框架使用RWD选择Infor-
通过双倍稳定
估计。在AIM 2中,为了改善DTR的实际实用性,我们提出了一种强大的方法来推断个人
RWD的治疗选择/偏好,然后将此估计的偏好纳入学习DTR中
试用数据。所得的DTR不仅在统计上有效,而且与患者/临床医生的偏好兼容
在现实世界中。在AIM 3中,为了减少由于RWD中隐藏的混杂因素而引起的偏见,我们提出了关节
半参数模型将试验数据与RWD相结合;我们提出的模型允许不同的磁性
由于RWD中隐藏的混杂因素,治疗效果大小和控制可能偏置。在AIM 4中解决
对长期风险的关注,我们考虑了一种估算DTR的一般程序,以最大程度地提高效率
结果同时确保与建议的DTR相关的长期副作用保持在
某些阈值。然后,我们提出了一种新颖的同时学习算法,以估计跨越的最佳DTR
所有阶段。对于所有四个目标,我们将使用来自
集中不平等,统计学习理论,经验过程和半参数推断。我们将
进行广泛的仿真研究,以研究各种集合中提出的方法的性能
用现成的方法将其性能进行比较。我们将应用提出的方法估算
使用临床试验数据和RWD从哥伦比亚大学和
俄亥俄州立大学医学中心以及我们的精密医学研究。我们的方法和发现将
通过软件开发宣传;该软件将根据用户反馈经常接收更新。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yuanjia Wang其他文献
Yuanjia Wang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yuanjia Wang', 18)}}的其他基金
Machine Learning Methods for Optimizing Individualized Treatment Strategies for Precision Psychiatry
用于优化精准精神病学个体化治疗策略的机器学习方法
- 批准号:
10609084 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Machine Learning Methods for Optimizing Individualized Treatment Strategies for Precision Psychiatry
用于优化精准精神病学个体化治疗策略的机器学习方法
- 批准号:
10454322 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Machine Learning Methods for Optimizing Individualized Treatment Strategies for Precision Psychiatry
用于优化精准精神病学个体化治疗策略的机器学习方法
- 批准号:
10208246 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Efficient Statistical Learning Methods for Personalized Medicine Using Large Scale Biomedical Data
使用大规模生物医学数据进行个性化医疗的高效统计学习方法
- 批准号:
10161345 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Efficient Statistical Learning Methods for Personalized Medicine Using Large Scale Biomedical Data
使用大规模生物医学数据进行个性化医疗的高效统计学习方法
- 批准号:
9891071 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Efficient Methods for Genotype-Specific Distributions with Unobserved Genotypes.
未观察到的基因型的基因型特异性分布的有效方法。
- 批准号:
8083280 - 财政年份:2011
- 资助金额:
-- - 项目类别:
Efficient Methods for Genotype-Specific Distributions with Unobserved Genotypes.
未观察到的基因型的基因型特异性分布的有效方法。
- 批准号:
8488504 - 财政年份:2011
- 资助金额:
-- - 项目类别:
Efficient Methods for Genotype-Specific Distributions with Unobserved Genotypes.
未观察到的基因型的基因型特异性分布的有效方法。
- 批准号:
8299433 - 财政年份:2011
- 资助金额:
-- - 项目类别:
Statistical Methods for Integrating Mixed-type Biomarkers and Phenotypes in Neurodegenerative Disease Modeling
在神经退行性疾病模型中整合混合型生物标志物和表型的统计方法
- 批准号:
10583203 - 财政年份:2011
- 资助金额:
-- - 项目类别:
Efficient Methods for Genotype-Specific Distributions with Unobserved Genotypes.
未观察到的基因型的基因型特异性分布的有效方法。
- 批准号:
8663321 - 财政年份:2011
- 资助金额:
-- - 项目类别:
相似国自然基金
基于腔光机械效应的石墨烯光纤加速度计研究
- 批准号:62305039
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于自持相干放大的高精度微腔光力加速度计研究
- 批准号:52305621
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
位移、加速度双控式自复位支撑-高层钢框架结构的抗震设计方法及韧性评估研究
- 批准号:52308484
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
高离心加速度行星排滚针轴承多场耦合特性与保持架断裂失效机理研究
- 批准号:52305047
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
基于偏心光纤包层光栅的矢量振动加速度传感技术研究
- 批准号:62305269
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Los Angeles - Southern California (LASC) NIH StrokeNet Regional Coordinating Center
洛杉矶 - 南加州 (LASC) NIH StrokeNet 区域协调中心
- 批准号:
10669559 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Medical University of South Carolina - Cancer Center Support Grant
南卡罗来纳医科大学 - 癌症中心支持补助金
- 批准号:
10589893 - 财政年份:2009
- 资助金额:
-- - 项目类别: