Machine Learning Methods for Optimizing Individualized Treatment Strategies for Precision Psychiatry
用于优化精准精神病学个体化治疗策略的机器学习方法
基本信息
- 批准号:10208246
- 负责人:
- 金额:$ 41.83万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-20 至 2026-04-30
- 项目状态:未结题
- 来源:
- 关键词:AccountingAddressAdvocateAttentionBehaviorBehavior TherapyBehavioralBiologicalBiological MarkersBiologyBrainCharacteristicsChronicClassificationClinicalClinical TrialsClinical Trials DatabaseCollaborationsComplexConfidence IntervalsDataData SetData SourcesDecision MakingDiagnosticDimensionsDiseaseEvaluationFaceFunctional disorderFutureGoalsHeterogeneityLearningMachine LearningMajor Depressive DisorderMeasuresMental disordersMethodsModalityModelingNational Institute of Mental HealthNeuropsychological TestsOutcomePatientsPharmacologyPhasePsychiatryPsychological TransferPublic HealthRandomizedRandomized Controlled TrialsRecording of previous eventsReproducibilityResearchResearch Domain CriteriaResearch PersonnelStrategic PlanningSumSymptomsTrainingTreatment outcomeVariantbehavior testbehavioral phenotypingcognitive controlcomorbiditydata archivedenoisingdesigndisabilitydisability-adjusted life yearseffective therapyemotion regulationimprovedindividual patientindividualized medicineinnovationmachine learning methodmental disorder diagnosismental health centermultimodal dataneuroimagingneurophysiologynoveloptimal treatmentspatient populationpatient variabilitypersonalized medicinepsychosocialresponsesecondary outcomestatistical and machine learningtooltreatment optimizationtreatment responsetreatment strategytrend
项目摘要
Project Summary:
Mental disorders cause immense disability, accounting for 183.9 million disability-adjusted life-years world-
wide. Among currently available pharmacological and behavioral interventions, no single therapy is universally ef-
fective. Moreover, treatment responses are far from adequate across mental disorders. As such, there is an urgent
need to optimize treatment responses. Various factors appear to be associated with positive treatment responses
for mental disorders, thus providing evidence for improving response rate by incorporating patient-specific charac-
teristics in treatment decisions in an effort to achieve precision psychiatry. However, existing methods to incorpo-
rate patient-specific characteristics do not adequately address the unique challenges facing precision psychiatry.
To point, treatment decision making for mental disorders is inevitably confronted by extensive diagnostic hetero-
geneity, substantial between-patient variation in biological and clinical manifestations of disease, and mismatch
between diagnostic categorization and the underlying pathophysiology. To address these emerging challenges,
this proposal aims to develop novel machine learning and statistical inference methods to build individualized treat-
ment rules to account for the extensive heterogeneity and between-patient variability and integrate evidence from
multi-domain brain and behavioral data across several disorders. Specifically, we aim to: (1) learn optimal latent
representation of patients through a probabilistic generative model that has theoretical support under the National
Institute of Mental Health Strategic Plan on Research Domain Criteria (RDoC); (2) incorporate prior optimal treat-
ment information from the non-randomized phase of clinical trials through targeted transfer learning; (3) synthesize
individualized treatment decision rules learned from multiple studies; and (4) provide rigorous statistical inference
of fitted decision rules. Following the RDoC call for centering mental health research around latent constructs
shared across disorders, the methods developed here will be applied to a range of randomized controlled trials
(RCTs) of patients with major depressive disorder and other co-morbid disorders, including multiple high-quality
RCTs with multi-modality data (e.g., symptoms, behavioral tests, psychosocial measures, brain measures). This
strategy will allow for examination of treatment strategies for constructs shared across disorders and thus will in-
crease generalizability. In sum, this research will use machine learning approaches and statistical inference in
an effort to better leverage the complex interplay between biomarkers and clinical manifestations in the context of
precision psychiatry, with the goal of selecting the best treatments for patients with mental disorders.
项目概要:
精神障碍会导致巨大的残疾,造成全世界 1.839 亿残疾调整生命年——
在目前可用的药物和行为干预措施中,没有一种单一疗法是普遍有效的。
此外,针对精神障碍的治疗效果还远远不够,因此,迫切需要采取有效的治疗措施。
需要优化治疗反应,各种因素似乎与积极的治疗反应有关。
对于精神障碍,从而为通过结合患者的具体特征来提高反应率提供了证据
为了实现精确的精神病学,现有的方法无法纳入治疗决策。
患者的具体特征并不能充分解决精准精神病学面临的独特挑战。
值得注意的是,精神障碍的治疗决策最终面临着广泛的诊断异质性
基因性、患者之间疾病生物学和临床表现的巨大差异以及不匹配
为了应对这些新出现的挑战,
该提案旨在开发新颖的机器学习和统计推断方法来建立个性化治疗
治疗规则来解释广泛的异质性和患者之间的变异性,并整合来自
跨多种疾病的多域大脑和行为数据。具体来说,我们的目标是:(1)学习最佳潜在
通过概率生成模型来代表患者,该模型得到了国家医学中心的理论支持
心理健康研究所研究领域标准战略计划 (RDoC) (2) 纳入先前的最佳治疗
(3)通过有针对性的迁移学习来综合临床试验非随机阶段的信息;
从多项研究中学到的个体化治疗决策规则;(4)提供严格的统计推论;
遵循 RDoC 的呼吁,将心理健康研究集中在潜在的结构上。
跨疾病共享,这里开发的方法将应用于一系列随机对照试验
(随机对照试验)患有重度抑郁症和其他共病疾病的患者,包括多种高质量的
具有多模态数据的随机对照试验(例如症状、行为测试、社会心理测量、大脑测量)。
战略将允许检查跨疾病共享结构的治疗策略,因此将在-
总之,本研究将使用机器学习方法和统计推断。
努力更好地利用生物标志物和临床表现之间复杂的相互作用
精准精神病学,旨在为精神障碍患者选择最佳治疗方法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yuanjia Wang其他文献
Yuanjia Wang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yuanjia Wang', 18)}}的其他基金
Machine Learning Methods for Optimizing Individualized Treatment Strategies for Precision Psychiatry
用于优化精准精神病学个体化治疗策略的机器学习方法
- 批准号:
10609084 - 财政年份:2021
- 资助金额:
$ 41.83万 - 项目类别:
Machine Learning Methods for Optimizing Individualized Treatment Strategies for Precision Psychiatry
用于优化精准精神病学个体化治疗策略的机器学习方法
- 批准号:
10454322 - 财政年份:2021
- 资助金额:
$ 41.83万 - 项目类别:
Efficient Statistical Learning Methods for Personalized Medicine Using Large Scale Biomedical Data
使用大规模生物医学数据进行个性化医疗的高效统计学习方法
- 批准号:
10161345 - 财政年份:2018
- 资助金额:
$ 41.83万 - 项目类别:
Efficient Statistical Learning Methods for Personalized Medicine Using Large Scale Biomedical Data
使用大规模生物医学数据进行个性化医疗的高效统计学习方法
- 批准号:
9891071 - 财政年份:2018
- 资助金额:
$ 41.83万 - 项目类别:
Statistical and Machine Learning Methods to Improve Dynamic Treatment Regimens Estimation Using Real World Data
使用真实世界数据改进动态治疗方案估计的统计和机器学习方法
- 批准号:
10654927 - 财政年份:2018
- 资助金额:
$ 41.83万 - 项目类别:
Efficient Methods for Genotype-Specific Distributions with Unobserved Genotypes.
未观察到的基因型的基因型特异性分布的有效方法。
- 批准号:
8083280 - 财政年份:2011
- 资助金额:
$ 41.83万 - 项目类别:
Efficient Methods for Genotype-Specific Distributions with Unobserved Genotypes.
未观察到的基因型的基因型特异性分布的有效方法。
- 批准号:
8488504 - 财政年份:2011
- 资助金额:
$ 41.83万 - 项目类别:
Efficient Methods for Genotype-Specific Distributions with Unobserved Genotypes.
未观察到的基因型的基因型特异性分布的有效方法。
- 批准号:
8299433 - 财政年份:2011
- 资助金额:
$ 41.83万 - 项目类别:
Efficient Methods for Genotype-Specific Distributions with Unobserved Genotypes.
未观察到的基因型的基因型特异性分布的有效方法。
- 批准号:
8663321 - 财政年份:2011
- 资助金额:
$ 41.83万 - 项目类别:
Statistical Methods for Integrating Mixed-type Biomarkers and Phenotypes in Neurodegenerative Disease Modeling
在神经退行性疾病模型中整合混合型生物标志物和表型的统计方法
- 批准号:
10583203 - 财政年份:2011
- 资助金额:
$ 41.83万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Differences in Hospital Nursing Resources among Black-Serving Hospitals as a Driver of Patient Outcomes Disparities
黑人服务医院之间医院护理资源的差异是患者结果差异的驱动因素
- 批准号:
10633905 - 财政年份:2023
- 资助金额:
$ 41.83万 - 项目类别:
Radiation Oncology at the Interface of Pediatric Cancer Biology and Data Science
儿科癌症生物学和数据科学交叉领域的放射肿瘤学
- 批准号:
10712290 - 财政年份:2023
- 资助金额:
$ 41.83万 - 项目类别:
A longitudinal study identifying psychological and service delivery targets to improve daily living skills and quality of life outcomes among transition-age autistic youth
一项纵向研究,确定心理和服务提供目标,以提高过渡年龄自闭症青少年的日常生活技能和生活质量
- 批准号:
10719680 - 财政年份:2023
- 资助金额:
$ 41.83万 - 项目类别:
Strengthening perinatal healthcare utilization and quality of care for Indigenous and low socioeconomic status women through systems change: integrating person, provider, and policy perspectives.
通过系统变革,加强对土著和低社会经济地位妇女的围产期保健利用和护理质量:整合个人、提供者和政策观点。
- 批准号:
10748659 - 财政年份:2023
- 资助金额:
$ 41.83万 - 项目类别: