CT and CXR Phenotyping Platform for Assessing COVID-19 Susceptibility and Severity
用于评估 COVID-19 敏感性和严重程度的 CT 和 CXR 表型平台
基本信息
- 批准号:10382425
- 负责人:
- 金额:$ 27.25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-04-02 至 2024-05-31
- 项目状态:已结题
- 来源:
- 关键词:2019-nCoVAcuteArchitectureArtificial IntelligenceBiological MarkersCOVID-19COVID-19 patientCOVID-19 severityCOVID-19 susceptibilityCase Fatality RatesChestChronic Lung InjuryChronic lung diseaseClinicalCommunicable DiseasesCommunitiesDataDecision TreesDetectionDevelopmentDiseaseDisease susceptibilityEpidemiologic FactorsEvolutionFundingGoalsHeterogeneityImageImmune responseInfectionInflammatoryInjuryIntensive CareLungMachine LearningMapsMeasurementMeasuresMethodologyMethodsModalityOutcomePatient CarePatternPhasePhenotypePlayPredispositionPrognostic MarkerPulmonary InflammationRadiology SpecialtyResearchResolutionResponse ElementsRoentgen RaysRoleSARS-CoV-2 infectionScanningSeverity of illnessSmokingSoftware ToolsStressStructure of parenchyma of lungTechniquesTechnologyThoracic RadiographyTrainingTranslatingUnited StatesUnited States National Institutes of HealthVirusVirus DiseasesX-Ray Computed TomographyX-Ray Medical Imagingacute careacute symptombasechest computed tomographyclinical investigationclinical translationdeep learningdeep neural networkfollow-upgradient boostinghigh riskimage translationimaging platforminterestlearning strategylung injurynovelopen dataopen sourcepandemic diseasepersonalized approachprognostic modelprognosticationradiological imagingradiomicsresponsesevere COVID-19systemic inflammatory responsetherapeutic developmenttool
项目摘要
Abstract
COVID-19 was declared a pandemic by WHO on March 11. Since then, there have been 8.15 million
confirmed cases worldwide with a case fatality rate ranging from 16.3% to 0.1%. In the US, there have been
2,187,202 cases with a 5.4% case fatality rate as of June 16, 2020. The magnitude of this infectious disease
has stressed the need to develop novel methodologies to define who are at the highest risk of developing
acute symptoms. X-Ray (CXR) and Computed Tomography (CT) play a fundamental role in the detection and
follow-up of the COVID-19 lung injury. It also provides a unique opportunity to define quantitative biomarkers
that may identify susceptible subjects to the acute phase of the disease using pre-infection and early infection
radiological exams.
This proposal's broad objective is to provide a better understanding of acute COVID-19 susceptibility markers
based on artificial intelligence approaches on radiological exams, both CT and CXR. CT offers a unique way to
phenotype the lung and its changes. Subtle changes of normal parenchyma have been associated with
systemic inflammation that can be detected on CT. We hypothesize that susceptible subjects for acute COVID-
19 disease evolution will express inflamed normal parenchymal signatures that can be measured on CT scan
prior to the infection or in the early phases of the viral infection. We will develop new computational
approaches to identify radiographic patterns consistent with inflamed normal parenchyma as well as early
COVID-19 injury and compute radiomics signature that can capture the heterogeneity of the radiographic
expression for each lung pattern. We will define new CT-based biomarkers for acute COVID-19 susceptibility
using Gradient Boosting decision trees and feature importance. We will then translate the quantification of the
most relevant features in CXR image using image translation approaches based on deep neural networks.
Finally, we will integrate these automated tools in the CIP workstation using clinically friendly end-to-end
workflows to empower clinical investigations across the world. We will continue the support and dissemination
of this tool across the research community. Over the last 15 years, our group has developed the Chest Imaging
Platform (CIP), an NIH-funded open-source software tool for the automated phenotyping of chest CT scans
that is widely used in the chronic lung disease research community. Since the beginning of the pandemic, CIP
has been used to the characterization of COVID-19 using existing densitometric metrics. Our commitment to
open science in the form of open toolkits that are freely distributed is fundamental to catalyze the application of
AI and imaging in the context of this pandemic.
抽象的
3 月 11 日,世界卫生组织宣布 COVID-19 为大流行病。此后,已有 815 万人感染
全球确诊病例数为16.3%至0.1%。在美国,已经有
截至 2020 年 6 月 16 日,已有 2,187,202 例病例,病死率为 5.4%。 这种传染病的严重程度
强调需要开发新的方法来确定哪些人面临最高的患病风险
急性症状。 X 射线 (CXR) 和计算机断层扫描 (CT) 在检测和诊断中发挥着基础作用。
COVID-19 肺损伤的随访。它还提供了定义定量生物标志物的独特机会
可以通过感染前和早期感染来识别疾病急性期的易感人群
放射学检查。
该提案的广泛目标是更好地了解急性 COVID-19 易感性标志物
基于 CT 和 CXR 放射检查的人工智能方法。 CT 提供了一种独特的方法
肺表型及其变化。正常实质的微妙变化与
CT 可以检测到全身炎症。我们假设急性新冠病毒易感人群
19 种疾病的演变将表现出可通过 CT 扫描测量的发炎的正常实质特征
在感染之前或病毒感染的早期阶段。我们将开发新的计算
识别与发炎的正常实质一致的放射照相模式以及早期的方法
COVID-19 损伤和计算放射组学特征,可以捕获放射线照相的异质性
每个肺部模式的表达。我们将为急性 COVID-19 易感性定义新的基于 CT 的生物标志物
使用梯度提升决策树和特征重要性。然后我们将翻译量化
使用基于深度神经网络的图像转换方法来识别 CXR 图像中最相关的特征。
最后,我们将使用临床友好的端到端将这些自动化工具集成到 CIP 工作站中
为世界各地的临床研究提供支持的工作流程。我们将继续支持和传播
该工具在整个研究界的普及。在过去 15 年里,我们的团队开发了胸部影像
Platform (CIP),一个由 NIH 资助的开源软件工具,用于胸部 CT 扫描的自动表型分析
广泛应用于慢性肺病研究界。自疫情爆发以来,CIP
已用于使用现有的密度测量指标来表征 COVID-19。我们的承诺
以免费分发的开放工具包形式存在的开放科学是促进应用的基础
这次大流行背景下的人工智能和成像。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Artificial intelligence in functional imaging of the lung.
- DOI:10.1259/bjr.20210527
- 发表时间:2022-04-01
- 期刊:
- 影响因子:0
- 作者:San José Estépar R
- 通讯作者:San José Estépar R
Deep learning-based lesion subtyping and prediction of clinical outcomes in COVID-19 pneumonia using chest CT.
- DOI:10.1038/s41598-022-13298-8
- 发表时间:2022-06-07
- 期刊:
- 影响因子:4.6
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Raul San Jose Estepar其他文献
Raul San Jose Estepar的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Raul San Jose Estepar', 18)}}的其他基金
Contributions of pulmonary arterial and venous remodeling to HFpEF in the elderly
肺动脉和静脉重构对老年人 HFpEF 的影响
- 批准号:
10446349 - 财政年份:2022
- 资助金额:
$ 27.25万 - 项目类别:
Contributions of pulmonary arterial and venous remodeling to HFpEF in the elderly
肺动脉和静脉重构对老年人 HFpEF 的影响
- 批准号:
10621906 - 财政年份:2022
- 资助金额:
$ 27.25万 - 项目类别:
CT and CXR Phenotyping Platform for Assessing COVID-19 Susceptibility and Severity
用于评估 COVID-19 敏感性和严重程度的 CT 和 CXR 表型平台
- 批准号:
10196276 - 财政年份:2021
- 资助金额:
$ 27.25万 - 项目类别:
The clinical impact of pulmonary vascular remodeling in smokers
吸烟者肺血管重塑的临床影响
- 批准号:
8418060 - 财政年份:2013
- 资助金额:
$ 27.25万 - 项目类别:
Airway Inspector: a chest imaging biomarker software platform for COPD
Airway Inspector:用于 COPD 的胸部成像生物标志物软件平台
- 批准号:
8421710 - 财政年份:2013
- 资助金额:
$ 27.25万 - 项目类别:
Airway Inspector: a chest imaging biomarker software platform for COPD
Airway Inspector:用于 COPD 的胸部成像生物标志物软件平台
- 批准号:
8605217 - 财政年份:2013
- 资助金额:
$ 27.25万 - 项目类别:
The clinical impact of pulmonary vascular remodeling in smokers
吸烟者肺血管重塑的临床影响
- 批准号:
8793809 - 财政年份:2013
- 资助金额:
$ 27.25万 - 项目类别:
The clinical impact of longitudinal measures of cardiac and pulmonary vascular morphology in smokers
吸烟者心脏和肺血管形态纵向测量的临床影响
- 批准号:
9982372 - 财政年份:2013
- 资助金额:
$ 27.25万 - 项目类别:
相似国自然基金
Tenascin-X对急性肾损伤血管内皮细胞的保护作用及机制研究
- 批准号:82300764
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
活性脂质Arlm-1介导的自噬流阻滞在儿童T细胞急性淋巴细胞白血病化疗耐药逆转中的作用机制研究
- 批准号:82300182
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
PHF6突变通过相分离调控YTHDC2-m6A-SREBP2信号轴促进急性T淋巴细胞白血病发生发展的机制研究
- 批准号:82370165
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
SGO2/MAD2互作调控肝祖细胞的细胞周期再进入影响急性肝衰竭肝再生的机制研究
- 批准号:82300697
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
KIF5B调控隧道纳米管介导的线粒体转运对FLT3-ITD阳性急性髓系白血病的作用机制
- 批准号:82370175
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Loss of Endothelial S1PR1 Drives Post-Influenza Pulmonary Fibrosis
内皮 S1PR1 的缺失导致流感后肺纤维化
- 批准号:
10634045 - 财政年份:2023
- 资助金额:
$ 27.25万 - 项目类别:
Impact of SARS-CoV-2 mediated salivary gland dysfunction on secreted salivary antimicrobial peptides and the risk for oral opportunistic infections
SARS-CoV-2介导的唾液腺功能障碍对分泌的唾液抗菌肽的影响以及口腔机会性感染的风险
- 批准号:
10429036 - 财政年份:2022
- 资助金额:
$ 27.25万 - 项目类别:
Discovery of novel regulatory territories in the TNF/LT locus
TNF/LT 基因座中新调控区域的发现
- 批准号:
10650771 - 财政年份:2022
- 资助金额:
$ 27.25万 - 项目类别:
Lipid Bilayer Remodeling and Protein Intermediates During Membrane Fusion
膜融合过程中的脂质双层重塑和蛋白质中间体
- 批准号:
10670375 - 财政年份:2022
- 资助金额:
$ 27.25万 - 项目类别: