CT and CXR Phenotyping Platform for Assessing COVID-19 Susceptibility and Severity
用于评估 COVID-19 敏感性和严重程度的 CT 和 CXR 表型平台
基本信息
- 批准号:10382425
- 负责人:
- 金额:$ 27.25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-04-02 至 2024-05-31
- 项目状态:已结题
- 来源:
- 关键词:2019-nCoVAcuteArchitectureArtificial IntelligenceBiological MarkersCOVID-19COVID-19 patientCOVID-19 severityCOVID-19 susceptibilityCase Fatality RatesChestChronic Lung InjuryChronic lung diseaseClinicalCommunicable DiseasesCommunitiesDataDecision TreesDetectionDevelopmentDiseaseDisease susceptibilityEpidemiologic FactorsEvolutionFundingGoalsHeterogeneityImageImmune responseInfectionInflammatoryInjuryIntensive CareLungMachine LearningMapsMeasurementMeasuresMethodologyMethodsModalityOutcomePatient CarePatternPhasePhenotypePlayPredispositionPrognostic MarkerPulmonary InflammationRadiology SpecialtyResearchResolutionResponse ElementsRoentgen RaysRoleSARS-CoV-2 infectionScanningSeverity of illnessSmokingSoftware ToolsStressStructure of parenchyma of lungTechniquesTechnologyThoracic RadiographyTrainingTranslatingUnited StatesUnited States National Institutes of HealthVirusVirus DiseasesX-Ray Computed TomographyX-Ray Medical Imagingacute careacute symptombasechest computed tomographyclinical investigationclinical translationdeep learningdeep neural networkfollow-upgradient boostinghigh riskimage translationimaging platforminterestlearning strategylung injurynovelopen dataopen sourcepandemic diseasepersonalized approachprognostic modelprognosticationradiological imagingradiomicsresponsesevere COVID-19systemic inflammatory responsetherapeutic developmenttool
项目摘要
Abstract
COVID-19 was declared a pandemic by WHO on March 11. Since then, there have been 8.15 million
confirmed cases worldwide with a case fatality rate ranging from 16.3% to 0.1%. In the US, there have been
2,187,202 cases with a 5.4% case fatality rate as of June 16, 2020. The magnitude of this infectious disease
has stressed the need to develop novel methodologies to define who are at the highest risk of developing
acute symptoms. X-Ray (CXR) and Computed Tomography (CT) play a fundamental role in the detection and
follow-up of the COVID-19 lung injury. It also provides a unique opportunity to define quantitative biomarkers
that may identify susceptible subjects to the acute phase of the disease using pre-infection and early infection
radiological exams.
This proposal's broad objective is to provide a better understanding of acute COVID-19 susceptibility markers
based on artificial intelligence approaches on radiological exams, both CT and CXR. CT offers a unique way to
phenotype the lung and its changes. Subtle changes of normal parenchyma have been associated with
systemic inflammation that can be detected on CT. We hypothesize that susceptible subjects for acute COVID-
19 disease evolution will express inflamed normal parenchymal signatures that can be measured on CT scan
prior to the infection or in the early phases of the viral infection. We will develop new computational
approaches to identify radiographic patterns consistent with inflamed normal parenchyma as well as early
COVID-19 injury and compute radiomics signature that can capture the heterogeneity of the radiographic
expression for each lung pattern. We will define new CT-based biomarkers for acute COVID-19 susceptibility
using Gradient Boosting decision trees and feature importance. We will then translate the quantification of the
most relevant features in CXR image using image translation approaches based on deep neural networks.
Finally, we will integrate these automated tools in the CIP workstation using clinically friendly end-to-end
workflows to empower clinical investigations across the world. We will continue the support and dissemination
of this tool across the research community. Over the last 15 years, our group has developed the Chest Imaging
Platform (CIP), an NIH-funded open-source software tool for the automated phenotyping of chest CT scans
that is widely used in the chronic lung disease research community. Since the beginning of the pandemic, CIP
has been used to the characterization of COVID-19 using existing densitometric metrics. Our commitment to
open science in the form of open toolkits that are freely distributed is fundamental to catalyze the application of
AI and imaging in the context of this pandemic.
抽象的
3月11日,WHO宣布Covid-19被宣布为大流行。从那以后,有815万
确认的案件在全球范围内,病例死亡率范围从16.3%到0.1%。在美国,有
截至2020年6月16日,案件死亡率为5.4%的病例为2,187,202例。这种传染病的大小
已经强调需要开发新颖的方法来定义谁是发展的最高风险
急性症状。 X射线(CXR)和计算机断层扫描(CT)在检测中起着基本作用
COVID-19肺损伤的随访。它还提供了一个独特的机会来定义定量生物标志物
可能会使用感染前和早期感染确定疾病急性阶段的敏感受试者
放射学检查。
该提议的广泛目标是更好地了解急性共同易感性标记
基于CT和CXR的放射学检查的人工智能方法。 CT提供了一种独特的方式
表型肺及其变化。正常实质的细微变化与
可以在CT上检测到的全身性炎症。我们假设敏感受试者是急性共同的。
19疾病进化将表达可以在CT扫描上测量的正常实质特征的发炎
在感染或病毒感染的早期阶段。我们将开发新的计算
识别与正常实质以及早期发炎的射线照相模式的方法
COVID-19损伤和计算可以捕获射线照相的异质性的放射线学签名
每个肺模式的表达。我们将定义新的基于CT的生物标志物,用于急性Covid-19易感性
使用梯度提升决策树并具有重要性。然后,我们将翻译量化
CXR图像中的大多数相关特征使用基于深神经网络的图像翻译方法。
最后,我们将使用临床上友好的端到端将这些自动化工具集成到CIP工作站
工作流程以增强全球临床调查的能力。我们将继续支持和传播
整个研究社区的工具。在过去的15年中,我们的小组开发了胸部成像
平台(CIP),一种由NIH资助的开源软件工具,用于自动表型的胸部CT扫描
这是在慢性肺部疾病研究界广泛使用的。自大流行开始以来
已使用现有的光密度指标来表征COVID-19。我们对
以自由分布的开放工具包的形式开放科学是催化应用的基础
AI和成像在这个大流行的背景下。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Artificial intelligence in functional imaging of the lung.
- DOI:10.1259/bjr.20210527
- 发表时间:2022-04-01
- 期刊:
- 影响因子:0
- 作者:San José Estépar R
- 通讯作者:San José Estépar R
Deep learning-based lesion subtyping and prediction of clinical outcomes in COVID-19 pneumonia using chest CT.
- DOI:10.1038/s41598-022-13298-8
- 发表时间:2022-06-07
- 期刊:
- 影响因子:4.6
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Raul San Jose Estepar其他文献
Raul San Jose Estepar的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Raul San Jose Estepar', 18)}}的其他基金
Contributions of pulmonary arterial and venous remodeling to HFpEF in the elderly
肺动脉和静脉重构对老年人 HFpEF 的影响
- 批准号:
10446349 - 财政年份:2022
- 资助金额:
$ 27.25万 - 项目类别:
Contributions of pulmonary arterial and venous remodeling to HFpEF in the elderly
肺动脉和静脉重构对老年人 HFpEF 的影响
- 批准号:
10621906 - 财政年份:2022
- 资助金额:
$ 27.25万 - 项目类别:
CT and CXR Phenotyping Platform for Assessing COVID-19 Susceptibility and Severity
用于评估 COVID-19 敏感性和严重程度的 CT 和 CXR 表型平台
- 批准号:
10196276 - 财政年份:2021
- 资助金额:
$ 27.25万 - 项目类别:
The clinical impact of pulmonary vascular remodeling in smokers
吸烟者肺血管重塑的临床影响
- 批准号:
8418060 - 财政年份:2013
- 资助金额:
$ 27.25万 - 项目类别:
Airway Inspector: a chest imaging biomarker software platform for COPD
Airway Inspector:用于 COPD 的胸部成像生物标志物软件平台
- 批准号:
8421710 - 财政年份:2013
- 资助金额:
$ 27.25万 - 项目类别:
Airway Inspector: a chest imaging biomarker software platform for COPD
Airway Inspector:用于 COPD 的胸部成像生物标志物软件平台
- 批准号:
8605217 - 财政年份:2013
- 资助金额:
$ 27.25万 - 项目类别:
The clinical impact of pulmonary vascular remodeling in smokers
吸烟者肺血管重塑的临床影响
- 批准号:
8793809 - 财政年份:2013
- 资助金额:
$ 27.25万 - 项目类别:
The clinical impact of longitudinal measures of cardiac and pulmonary vascular morphology in smokers
吸烟者心脏和肺血管形态纵向测量的临床影响
- 批准号:
9982372 - 财政年份:2013
- 资助金额:
$ 27.25万 - 项目类别:
相似国自然基金
用于急性出血控制的硅酸钙复合海绵的构建及其促凝血性能和机制研究
- 批准号:32301097
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
AF9通过ARRB2-MRGPRB2介导肠固有肥大细胞活化促进重症急性胰腺炎发生MOF的研究
- 批准号:82300739
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
代谢工程化MSC胞外囊泡靶向调控巨噬细胞线粒体动力学改善急性肾损伤的作用及机制研究
- 批准号:32371426
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
DUSP2介导自噬调控气管上皮细胞炎症在急性肺损伤中的机制研究
- 批准号:82360379
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
超声射频信号神经回路策略模型定量肌肉脂肪化评估慢加急性肝衰竭预后
- 批准号:82302221
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Loss of Endothelial S1PR1 Drives Post-Influenza Pulmonary Fibrosis
内皮 S1PR1 的缺失导致流感后肺纤维化
- 批准号:
10634045 - 财政年份:2023
- 资助金额:
$ 27.25万 - 项目类别:
Impact of SARS-CoV-2 mediated salivary gland dysfunction on secreted salivary antimicrobial peptides and the risk for oral opportunistic infections
SARS-CoV-2介导的唾液腺功能障碍对分泌的唾液抗菌肽的影响以及口腔机会性感染的风险
- 批准号:
10429036 - 财政年份:2022
- 资助金额:
$ 27.25万 - 项目类别:
Discovery of novel regulatory territories in the TNF/LT locus
TNF/LT 基因座中新调控区域的发现
- 批准号:
10650771 - 财政年份:2022
- 资助金额:
$ 27.25万 - 项目类别:
Lipid Bilayer Remodeling and Protein Intermediates During Membrane Fusion
膜融合过程中的脂质双层重塑和蛋白质中间体
- 批准号:
10670375 - 财政年份:2022
- 资助金额:
$ 27.25万 - 项目类别: