Prognostic Markers of Emphysema Progression
肺气肿进展的预后标志物
基本信息
- 批准号:10368048
- 负责人:
- 金额:$ 68.8万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-03-15 至 2024-02-29
- 项目状态:已结题
- 来源:
- 关键词:AddressAffectAlveolar wallAppearanceArchitectureBiological MarkersCause of DeathCharacteristicsChestChronicChronic BronchitisChronic Obstructive Pulmonary DiseaseClinicalClinical stratificationComplementConnective TissueDataDepositionDevelopmentDiseaseDisease ProgressionDistalFractureGeneticGoalsHistologicImageImpairmentInflammationInflammation ProcessInflammatoryInjuryInvestigationJointsLeadLogistic RegressionsLungLung volume reduction surgeryMachine LearningMapsMeasurementMechanical StressMechanicsMediatingMedical GeneticsMethodologyModelingOutcomePathologic ProcessesPathway interactionsPatient riskPatientsPatternPersonsPlasmaPredispositionProcessPrognostic MarkerPropertyPulmonary EmphysemaRadiology SpecialtyRegression AnalysisReportingReproducibilityResearchRiskScanningSmokerStagingStructure of parenchyma of lungSupervisionTechniquesTherapeuticTissuesTranslatingTranslationsUnited StatesValidationX-Ray Computed Tomographybaseclinical applicationclinical phenotypeclinical practicecohortconvolutional neural networkcostdeep learningdensityexperienceexpirationfollow-upfunctional declinegenetic associationimprovedin vivoinclusion criteriainflammatory markerinsightinspiration expirationmechanical propertiesnovelnovel therapeuticspatient stratificationpreservationprognosticprognostic modelprognostic valueprognosticationprogression markerprospectivepulmonary functionreduce symptomsrespiratoryresponseresponse to injuryrisk stratificationspecific biomarkerstissue stresstobacco smoke exposure
项目摘要
Project Summary/Abstract
Chronic Obstructive Pulmonary Disease (COPD) affects up to 24 million people in the United States and is
projected to be the 3rd leading cause of death worldwide by 2020 with a total cost of $50 billion. COPD has
been traditionally dichotomized into the clinical phenotypes of emphysema and chronic bronchitis, but its
underlying mechanisms are poorly understood. In particular, emphysema is defined as abnormal, permanent
dilation of the distal airspaces. The development and progression of this pathologic process are associated
with a decline in lung function and progressive clinical impairment. Computed tomographic (CT) imaging of the
chest is increasingly being leveraged to quantify the disease and its progression objectively. Current
approaches to quantify emphysema progression are limited and discard most of the spatial and temporal
information in CT scans obtained at inspiration and expiration. In this proposal, we plan on developing
computational components to prognosticate emphysema progression that builds upon image density markers
and lung mechanical strain characteristics conditioned on their underlying emphysema subtypes. This proposal
leverages our previous experience in computational emphysema subtyping to discover, validate and translate
a novel panel of prognostic markers tailored around the postulated mechanisms of emphysema progression:
inflammation injury and mechanical strain. To reach this goals, we will (1) develop an advanced emphysema
subtyping approach using novel deep learning architectures, (2) develop a fast mass preserving large
displacement registration approach to enable the discovery of local elastic properties of lung tissue between
inspiratory and expiration CT scans, (3) discover new subtype-specific biomarker features based on image
density relations and mechanical properties using unsupervised deep learning techniques within a common
statistical framework, and (4) validate the prognostic value of the proposed biomarkers and their association
with decline end-points and clinical outcomes to enable its clinical interpretation and translation. In addition to
that, will be explored alternative prognostic models based on advanced machine learning techniques and
performed a model comparison study to define the most prognostic model for emphysema progression. Our
analysis will process 12,300 scans corresponding to 5,517 subjects with baseline and follow-up data from the
COPDGene cohort –one of the largest cohort in COPD containing CT images at inspiration and expiration,
respiratory and genetic measurements. The proposed methodology will provide reproducible, automatic and
low-cost prognostic in-vivo biomarkers of emphysema progression that may enable the discovery of new
therapies and translate them into clinical practice.
项目概要/摘要
慢性阻塞性肺疾病 (COPD) 影响着美国多达 2400 万人,并且
预计到 2020 年,慢性阻塞性肺病将成为全球第三大死因,总成本达 500 亿美元。
传统上将其分为肺气肿和慢性支气管炎的临床表型,但其
其潜在机制尚不清楚,尤其是肺气肿被定义为异常的、永久性的。
这种病理过程的发生和进展是相关的。
肺功能下降和进行性计算机断层扫描 (CT) 成像。
目前,胸部越来越多地被用来客观地量化疾病及其进展。
量化肺气肿进展的方法是有限的,并且放弃了大部分空间和时间
在本提案中,我们计划开发在吸气和呼气时获得的 CT 扫描信息。
基于图像密度标记来预测肺气肿进展的计算组件
和肺机械应变特征取决于其潜在的肺气肿亚型。
利用我们之前在计算肺气肿亚型方面的经验来发现、验证和转化
围绕肺气肿进展的假设机制定制的一组新颖的预后标志物:
为了实现这一目标,我们将 (1) 发展为晚期肺气肿。
使用新颖的深度学习架构的子类型方法,(2)开发一种快速质量保存大
位移记录方法能够发现肺组织之间的局部弹性特性
吸气和呼气 CT 扫描,(3) 基于图像发现新的亚型特异性生物标志物特征
在共同的范围内使用无监督深度学习技术来计算密度关系和机械性能
统计框架,以及(4)验证所提出的生物标志物及其关联的预后价值
具有下降的终点和临床结果,以实现其临床解释和翻译。
将探索基于先进机器学习技术的替代预测模型
进行了模型比较研究,以确定肺气肿进展的最具预后性的模型。
分析将处理对应于 5,517 名受试者的 12,300 次扫描,其基线和后续数据来自
COPDGene 队列 – COPD 中最大的队列之一,包含吸气和呼气时的 CT 图像,
所提出的方法将提供可重复的、自动的和遗传的测量。
肺气肿进展的低成本体内预后生物标志物可能有助于发现新的
疗法并将其转化为临床实践。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Raul San Jose Estepar其他文献
Raul San Jose Estepar的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Raul San Jose Estepar', 18)}}的其他基金
Contributions of pulmonary arterial and venous remodeling to HFpEF in the elderly
肺动脉和静脉重构对老年人 HFpEF 的影响
- 批准号:
10446349 - 财政年份:2022
- 资助金额:
$ 68.8万 - 项目类别:
Contributions of pulmonary arterial and venous remodeling to HFpEF in the elderly
肺动脉和静脉重构对老年人 HFpEF 的影响
- 批准号:
10621906 - 财政年份:2022
- 资助金额:
$ 68.8万 - 项目类别:
CT and CXR Phenotyping Platform for Assessing COVID-19 Susceptibility and Severity
用于评估 COVID-19 敏感性和严重程度的 CT 和 CXR 表型平台
- 批准号:
10382425 - 财政年份:2021
- 资助金额:
$ 68.8万 - 项目类别:
CT and CXR Phenotyping Platform for Assessing COVID-19 Susceptibility and Severity
用于评估 COVID-19 敏感性和严重程度的 CT 和 CXR 表型平台
- 批准号:
10196276 - 财政年份:2021
- 资助金额:
$ 68.8万 - 项目类别:
The clinical impact of pulmonary vascular remodeling in smokers
吸烟者肺血管重塑的临床影响
- 批准号:
8418060 - 财政年份:2013
- 资助金额:
$ 68.8万 - 项目类别:
Airway Inspector: a chest imaging biomarker software platform for COPD
Airway Inspector:用于 COPD 的胸部成像生物标志物软件平台
- 批准号:
8421710 - 财政年份:2013
- 资助金额:
$ 68.8万 - 项目类别:
Airway Inspector: a chest imaging biomarker software platform for COPD
Airway Inspector:用于 COPD 的胸部成像生物标志物软件平台
- 批准号:
8605217 - 财政年份:2013
- 资助金额:
$ 68.8万 - 项目类别:
The clinical impact of pulmonary vascular remodeling in smokers
吸烟者肺血管重塑的临床影响
- 批准号:
8793809 - 财政年份:2013
- 资助金额:
$ 68.8万 - 项目类别:
The clinical impact of longitudinal measures of cardiac and pulmonary vascular morphology in smokers
吸烟者心脏和肺血管形态纵向测量的临床影响
- 批准号:
9982372 - 财政年份:2013
- 资助金额:
$ 68.8万 - 项目类别:
相似国自然基金
TiC-TiB2颗粒喷射成形原位合成及其对M2高速工具钢共晶碳化物形成与演化的影响
- 批准号:52361020
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
植被群落演替对河道水流结构和纵向离散特性影响机制研究
- 批准号:52309088
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
热带印度洋海表皮温日变化的数值模拟及对海气热通量的影响
- 批准号:42376002
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
SGO2/MAD2互作调控肝祖细胞的细胞周期再进入影响急性肝衰竭肝再生的机制研究
- 批准号:82300697
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
协同遥感和气候模型的城市高温热浪时空特征及其对热暴露影响研究
- 批准号:42371397
- 批准年份:2023
- 资助金额:46 万元
- 项目类别:面上项目
相似海外基金
New Advanced Engineering Tools for Investigating Lung Injury and Repair
用于研究肺损伤和修复的新型先进工程工具
- 批准号:
10353671 - 财政年份:2021
- 资助金额:
$ 68.8万 - 项目类别:
New Advanced Engineering Tools for Investigating Lung Injury and Repair
用于研究肺损伤和修复的新型先进工程工具
- 批准号:
10540771 - 财政年份:2021
- 资助金额:
$ 68.8万 - 项目类别:
A multimodal delivery and treatment approach for Acute Lung Injury
急性肺损伤的多模式递送和治疗方法
- 批准号:
10378509 - 财政年份:2020
- 资助金额:
$ 68.8万 - 项目类别:
A multimodal delivery and treatment approach for Acute Lung Injury
急性肺损伤的多模式递送和治疗方法
- 批准号:
10593959 - 财政年份:2020
- 资助金额:
$ 68.8万 - 项目类别:
SELECTIVE DELETION OF NEUTROPHIL NADPH OXIDASE AND INNATE RESPONSES TO ASPERGILLUS FUMIGATUS
中性粒细胞 NADPH 氧化酶的选择性缺失和对烟曲霉的先天反应
- 批准号:
9368526 - 财政年份:2017
- 资助金额:
$ 68.8万 - 项目类别: