Biophysical and Circuit Mechanisms of OXTR signaling
OXTR信号的生物物理和电路机制
基本信息
- 批准号:10438594
- 负责人:
- 金额:$ 40.72万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-15 至 2023-06-30
- 项目状态:已结题
- 来源:
- 关键词:AcidsAddressAffectAgonistAreaAxonBehaviorBiological AssayBiophysicsBloodBrainBrain regionCationsCellsColorCoupledDense Core VesicleDependenceFiberFrequenciesGenesGoalsHippocampus (Brain)Hypothalamic structureIndividualInterneuronsKnowledgeLateralLeadLightLinkMeasurementMediatingMemoryMethodsModelingNeuraxisNeuromodulatorNeuronsNeuropeptidesNeurosciencesNeurosciences ResearchNoiseOpticsOutputOxytocinOxytocin ReceptorParvalbuminsPatternPeptidesPerformancePhysiologicalPotassiumPropertyPyramidal CellsRadioimmunoassayReceptor ActivationReceptor CellResearchResolutionRetrievalRoleRouteSchizophreniaShapesSignal PathwaySignal TransductionSocial BehaviorSpatial BehaviorStructureSumSynapsesSynaptic TransmissionSystemTestingTranslatingVasopressin ReceptorVesicleautism spectrum disorderbehavior testcell typeexcitatory neuronexperimental studyhippocampal pyramidal neuronin vivo evaluationinformation processinginhibitory neuroninterestmaternal aggressionmelanopsinneural circuitneuropsychiatric disordernoveloptogeneticspeptide hormonepostsynapticpresynapticpupreceptorresponsesocialsocial influencespatial memoryspatiotemporaltool
项目摘要
Project Summary (Project 3, Co-PIs: Tsien, Froemke, Buzsaki)
Neuromodulators act across many timescales—a consequence of the dynamics of their release, receptor
activation and downstream signaling. Their actions target numerous subcellular compartments, shaping
synaptic transmission, intrinsic excitability and long-term plasticity. How, in turn, these phenomena translate to
behavior is a fundamental goal of neuroscience research. In Project 3, we grapple with this complexity by
deconstructing the actions of the peptide and hormone oxytocin. Famous for its roles in the periphery and in
social behavior, the biophysical and cellular consequences of oxytocin signaling in the central nervous system
are poorly described. A thorough understanding of how oxytocin’s role in the brain is further motivated by
disruption of oxytocin signaling in various neuropsychiatric disorders, including ASD and schizophrenia. To
address this gap in knowledge, we will study the cellular, synaptic and microcircuit signaling mechanisms of
oxytocin in the hippocampus, focusing on the CA2 subregion. Long overlooked, CA2 is enriched in OXTRs
and, intriguingly, has been implicated in social behavior. Our most recent efforts have focused on how
activation of the OXTR depolarizes CA2 pyramidal cells and causes them to enter into a burst firing mode. This
effect was attributable to inhibition of a Kv7-mediated potassium current (or M-current), downstream of a Gq-
coupled signaling pathway. In Project 3, we take these biophysical results into increasingly more physiological
contexts. In Aim 1, we ask how endogenous activity patterns of oxytocinergic fibers translate into oxytocin
release, receptor activation and changes in intrinsic excitability. In Aim 2, we test the strength of our model (in
which oxytocin’s effects in the hippocampus are primarily mediated by M-current inhibition), by developing
optical tools that test the sufficiency and necessity of M-current inhibition in oxytocin signaling. In Aim 3, we
ask how profound changes in hippocampal activity, specifically in CA2, are transmitted beyond the
hippocampus. We primarily focus our efforts on the lateral septum; a region long implicated in social behaviors,
densely innervated by the hippocampus and rich itself in OXTRs.
In sum, we propose a research plan that distills oxytocin signaling in the hippocampus into its most elementary
components: peptide release, receptor activation and cell-type specific modulation of the M-current. Then, as
an acid test of our understanding, we attempt to reconstruct oxytocin’s modulatory actions using our newly
developed optical tools. Finally, we consider how oxytocin signaling in the hippocampus may propagate to
downstream structures, ultimately influencing social behavior.
项目摘要(项目3,Co-Pis:Tsien,Froemke,Buzsaki)
神经调节剂在许多时间尺度上起作用 - 发行动力的结果,接收器
激活和下游信号传导。他们的行为针对众多细胞隔室,塑造
突触传递,内在的兴奋性和长期可塑性。反过来,这些现象如何转化为
行为是神经科学研究的基本目标。在项目3中,我们通过
解构胡椒和同种催产素的作用。以其在外围和中的角色而闻名
社会行为,中枢神经系统中氧信号的生物物理和细胞后果
描述很差。对氧气在大脑中的作用如何进一步成熟
包括ASD和精神分裂症在内的各种神经精神疾病中氧信号的破坏。到
解决这一知识的差距,我们将研究细胞,突触和微电路信号传导机制
海马中的催产素,重点是Ca2子区域。长期被忽视的Ca2富含Oxtrs
而且,有趣的是,在社会行为中暗示了。我们最近的努力集中在如何
OXTR的激活使Ca2锥体细胞去极化,并使它们进入爆发模式。这
效应归因于抑制Kv7介导的钾电流(或M-电流),在GQ-下游
耦合信号通路。在项目3中,我们将这些生物物理结果越来越多地生理
上下文。在AIM 1中,我们询问氧气纤维的内源性活性模式如何转化为氧加毒素
释放,受体激活和内在令人兴奋的变化。在AIM 2中,我们测试了模型的强度(在
催产素在海马中的作用主要是通过M-电流抑制来介导的)
光学工具测试氧信号中M-电流抑制的充分性和必要工具。在AIM 3中,我们
询问海马活动的深刻变化,特别是在CA2中
海马。我们主要将精力集中在侧隔隔膜上;一个长期与社会行为有关的地区,
不受海马的神经支配,并在Oxtrs中富裕。
总而言之,我们提出了一个研究计划,该计划将海马中的氧信号提取到其最基本的
成分:肽释放,受体激活和细胞类型的特异性调节。然后,为
对我们的理解的酸测试,我们尝试使用新的
开发的光学工具。最后,我们考虑海马中的氧信号如何传播到
下游结构,最终影响社会行为。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
RICHARD W TSIEN其他文献
RICHARD W TSIEN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('RICHARD W TSIEN', 18)}}的其他基金
Oxytocin Modulation of Neural Circuit Function and Behavior
催产素对神经回路功能和行为的调节
- 批准号:
10676011 - 财政年份:2022
- 资助金额:
$ 40.72万 - 项目类别:
Calcium Channels, CaMKII and Mechanisms of Excitation-Transcription Coupling
钙通道、CaMKII 和兴奋转录偶联机制
- 批准号:
10522762 - 财政年份:2022
- 资助金额:
$ 40.72万 - 项目类别:
Calcium Channels, CaMKII and Mechanisms of Excitation-Transcription Coupling
钙通道、CaMKII 和兴奋转录偶联机制
- 批准号:
10636887 - 财政年份:2022
- 资助金额:
$ 40.72万 - 项目类别:
Oxytocin Modulation of Neural Circuit Function and Behavior
催产素对神经回路功能和行为的调节
- 批准号:
10220151 - 财政年份:2018
- 资助金额:
$ 40.72万 - 项目类别:
Oxytocin Modulation of Neural Circuit Function and Behavior
催产素对神经回路功能和行为的调节
- 批准号:
10438587 - 财政年份:2018
- 资助金额:
$ 40.72万 - 项目类别:
Oxytocin Modulation of Neural Circuit Function and Behavior
催产素对神经回路功能和行为的调节
- 批准号:
10705986 - 财政年份:2018
- 资助金额:
$ 40.72万 - 项目类别:
Oxytocin Modulation of Neural Circuit Function and Behavior - Revision - 3
催产素对神经回路功能和行为的调节 - 修订版 - 3
- 批准号:
10601831 - 财政年份:2018
- 资助金额:
$ 40.72万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Climate Change Effects on Pregnancy via a Traditional Food
气候变化通过传统食物对怀孕的影响
- 批准号:
10822202 - 财政年份:2024
- 资助金额:
$ 40.72万 - 项目类别:
Executive functions in urban Hispanic/Latino youth: exposure to mixture of arsenic and pesticides during childhood
城市西班牙裔/拉丁裔青年的执行功能:童年时期接触砷和农药的混合物
- 批准号:
10751106 - 财政年份:2024
- 资助金额:
$ 40.72万 - 项目类别:
Designing novel therapeutics for Alzheimer’s disease using structural studies of tau
利用 tau 蛋白结构研究设计治疗阿尔茨海默病的新疗法
- 批准号:
10678341 - 财政年份:2023
- 资助金额:
$ 40.72万 - 项目类别:
Functional, structural, and computational consequences of NMDA receptor ablation at medial prefrontal cortex synapses
内侧前额皮质突触 NMDA 受体消融的功能、结构和计算后果
- 批准号:
10677047 - 财政年份:2023
- 资助金额:
$ 40.72万 - 项目类别:
The transcriptional control of vascular calcification in disease
疾病中血管钙化的转录控制
- 批准号:
10647475 - 财政年份:2023
- 资助金额:
$ 40.72万 - 项目类别: