Multiplexed, Non-Amplified, Nucleic Acid-Based Identification of Multidrug Resistant Pathogens Using an Integrated Optofluidic Platform

使用集成光流控平台对多重耐药病原体进行多重、非扩增、基于核酸的鉴定

基本信息

  • 批准号:
    9441612
  • 负责人:
  • 金额:
    $ 98.85万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-03-01 至 2020-02-28
  • 项目状态:
    已结题

项目摘要

 DESCRIPTION (provided by applicant): Antibiotic resistance has emerged as a major public health threat. Patients infected with drug- resistant pathogens suffer significantly higher rates o morbidity and mortality, most often due to delays in the administration of effective antimicrobial therapies. In particular for bloodstream infections, the need to rapidly identify both pathogen and resistance profile is crucial, as treatment with antibiotics to which the organism is sensitive is essential and time-critical. Indeed, sepsis is involved in up to half of all hospital deaths. Drug susceptibility information for a pathogen is typically not received by clinicians until at least 24 hours post-sampling, because of reliance on culture-based diagnostic methods. Recently, bloodstream infections caused by carbapenem-resistant Enterobacteriaceae (CRE) have become increasingly problematic. A rapid diagnostic assay for the detection and resistance determination of these pathogens is urgently needed. Although PCR-based assays are rapid, specific, and amenable to multiplexing, they have largely failed to perform in blood samples. Our industrial partner, Great Basin Corporation, has developed a fully disposable cartridge system for pathogen detection in cultured blood. We propose major improvements to this platform through the development of a multiplexed, non-amplified, non-cultured, nucleic acid-based assay for the detection and identification of multidrug resistant pathogens using a novel integrated optofluidic device. Bacteria will be concentrated directly from a blood sample by cross-flow filtration, and then delivered to a lysis and DNA-shearing chamber. Target DNAs containing the genes of interest will be captured on a solid substrate by hybridization. Molecular beacons will be hybridized to specific targets on the captured nucleic acids. These complexes will be released and specific beacons detected by an advanced optofluidics system capable of detecting single molecule fluorescence. We will demonstrate identification within one hour of bacteria in blood at levels as low as 10 CFU/mL. Initially, the focus will be to detect and characterize CRE isolated directly from a blood sample. The KPC, NDM, VIM, and IMP carbapenemase genes will be identified along with the simultaneous detection of specific markers for Klebsiella pneumoniae, Escherichia coli, and Enterobacter species. This platform is readily expandable to additional pathogens and their relevant antibiotic resistance genes. This technology has the potential to significantly reduce time to diagnosis and improve clinical outcomes.
 描述(由适用提供):抗生素耐药性已成为主要的公共卫生威胁。感染抗药性病原体的患者的发病率和死亡率明显更高,这通常是由于延迟了有效的抗菌治疗。特别是对于血液感染,需要快速识别病原体和 耐药性特征至关重要,因为用抗生素治疗生物敏感的抗生素是必不可少的且至关重要的。确实,败血症涉及所有医院死亡的一半。临床医生通常不会收到病原体的药物敏感性信息,直到至少24 采样后小时,由于对基于培养的诊断方法的缓解。最近,抗碳青霉烯肠杆菌科(CRE)引起的血液感染变得越来越有问题。迫切需要对这些病原体的检测和耐药性测定的快速诊断测定。尽管基于PCR的测定是快速,特异性的,并且可以适合多重化,但是它们在血液样本中基本上未能进行。我们的工业伙伴大盆地公司(Great Basin Corporation)开发了一种完全处置的墨盒系统,用于培养的血液中的病原体检测。我们通过开发一种多重,非培养的,基于核酸的核酸测定法,使用一种新型的集成的光氟烯设备来检测和鉴定多发性耐药病原体,从而对该平台提出了重大改进。细菌将通过跨流过滤直接从血液样本中浓缩,然后输送到裂解和DNA剪切室。包含感兴趣基因的靶DNA将通过杂交在固体底物上捕获。分子信标将与捕获的核酸的特定靶标杂交。这些复合物将被释放,并通过能够检测单分子荧光的高级光荧光系统检测到特定的信标。我们将在细菌的血液中以低至10 CFU/mL的水平来证明鉴定。最初,重点是检测和表征直接从血液样本中分离出来的CRE。将确定KPC,NDM,VIM和IMP碳酸碳纤维酶基因,并简单地检测到肺炎,大肠杆菌和肠杆菌的特定标记物。该平台很容易扩展到其他病原体及其相关的抗生素抗性基因。这项技术有可能大大减少诊断时间并改善临床结果。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Aaron R. Hawkins其他文献

High sensitivity fluorescence detection with multi-spot excitation using Y-splitters
使用 Y 型分光器进行多点激发的高灵敏度荧光检测
  • DOI:
    10.1364/cleo_si.2013.cth3j.5
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    D. Ozcelik;J. Parks;L. Zempoaltecatl;Kealyn Leake;J. Black;Yaeji Lim;Holger Schmidt;Aaron R. Hawkins
  • 通讯作者:
    Aaron R. Hawkins
Fabrication of hollow waveguides with sacrificial aluminum cores
具有牺牲铝芯的空心波导的制造
  • DOI:
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    2.6
  • 作者:
    J. Barber;D. Conkey;J. R. Lee;Neal B. Hubbard;Larry L. Howell;D. Yin;H. Schmidt;Aaron R. Hawkins
  • 通讯作者:
    Aaron R. Hawkins
Particle Concentration and Flowrates Using Electroactuated Nanopumps
使用电驱动纳米泵测量颗粒浓度和流量
Integration and characterization of SiN nanopores for single-molecule detection in liquid-core ARROW waveguides
用于液芯 ARROW 波导中单分子检测的 SiN 纳米孔的集成和表征
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Rudenko;D. Yin;M. Holmes;Aaron R. Hawkins;Holger Schmidt
  • 通讯作者:
    Holger Schmidt
Quantifying resistivity using scanning impedance imaging
  • DOI:
    10.1016/j.sna.2007.03.005
  • 发表时间:
    2007-07-04
  • 期刊:
  • 影响因子:
  • 作者:
    Brian G. Buss;Daniel N. Evans;Hongze Liu;Tao Shang;Travis E. Oliphant;Stephen M. Schultz;Aaron R. Hawkins
  • 通讯作者:
    Aaron R. Hawkins

Aaron R. Hawkins的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Aaron R. Hawkins', 18)}}的其他基金

Multiplexed, Non-Amplified, Nucleic Acid-Based Identification of Multidrug Resistant Pathogens Using an Integrated Optofluidic Platform
使用集成光流控平台对多重耐药病原体进行多重、非扩增、基于核酸的鉴定
  • 批准号:
    9221242
  • 财政年份:
    2015
  • 资助金额:
    $ 98.85万
  • 项目类别:
Rapid, low-cost mRNA analysis system for cancer companion diagnostics
用于癌症伴随诊断的快速、低成本 mRNA 分析系统
  • 批准号:
    8394718
  • 财政年份:
    2012
  • 资助金额:
    $ 98.85万
  • 项目类别:

相似国自然基金

结合态抗生素在水产品加工过程中的消解机制与产物毒性解析
  • 批准号:
    32302247
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于Fe-N-BC/PMS体系的自由基与非自由基协同降解地下水中磺胺类抗生素的机制研究
  • 批准号:
    42377036
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
基于高通量测序和培养组学的伴侣动物-人抗生素抗性基因分布特征及传播研究
  • 批准号:
    82373646
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目
微藻-细菌协同降解抗生素及其共适应机制
  • 批准号:
    42377367
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
多环芳烃影响大肠杆菌抗生素耐药性进化的分子机制
  • 批准号:
    32301424
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Development of Targeted Antipseudomonal Bactericidal Prodrugs
靶向抗假单胞菌杀菌前药的开发
  • 批准号:
    10678074
  • 财政年份:
    2023
  • 资助金额:
    $ 98.85万
  • 项目类别:
Hybrid Antibiotics for Persistent Infections
用于持续感染的混合抗生素
  • 批准号:
    10780719
  • 财政年份:
    2023
  • 资助金额:
    $ 98.85万
  • 项目类别:
Systems Epigenomics of Persistent Bloodstream Infection
持续性血流感染的系统表观基因组学
  • 批准号:
    10551703
  • 财政年份:
    2023
  • 资助金额:
    $ 98.85万
  • 项目类别:
An Integrated Catheter Dressing for Early Detection of Catheter-related Bloodstream Infections
用于早期检测导管相关血流感染的集成导管敷料
  • 批准号:
    10647072
  • 财政年份:
    2023
  • 资助金额:
    $ 98.85万
  • 项目类别:
Epigenomic Mechanisms & Contextual Immunity in Persistent MRSA Bacteremia
表观基因组机制
  • 批准号:
    10551708
  • 财政年份:
    2023
  • 资助金额:
    $ 98.85万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了