Multiplexed, Non-Amplified, Nucleic Acid-Based Identification of Multidrug Resistant Pathogens Using an Integrated Optofluidic Platform
使用集成光流控平台对多重耐药病原体进行多重、非扩增、基于核酸的鉴定
基本信息
- 批准号:9221242
- 负责人:
- 金额:$ 100.28万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-03-01 至 2020-02-28
- 项目状态:已结题
- 来源:
- 关键词:Antibiotic ResistanceAntibioticsBacteremiaBacteriaBacterial InfectionsBiological AssayBloodBlood CirculationBlood TestsBlood specimenCellsCessation of lifeClinicalComplexCytolysisDNADangerousnessDetectionDevelopmentDevicesDiagnosisDiagnostic ProcedureDiagnostic testsDrug resistanceEnterobacterEnterobacteriaceaeEnzymesEscherichia coliFDA approvedFiltrationFluorescenceGenesGoalsHealthHealthcareHospitalizationHospitalsHourHumanHybridsIndustrializationInfectionKlebsiella pneumonia bacteriumLabelLeadLengthMedicalMethodsMicrofluidicsMolecularMorbidity - disease rateNucleic AcidsOrganismOutcomePathogen detectionPatientsPharmaceutical PreparationsPredispositionPrevalenceProcessPublic HealthReproducibilityResistanceResistance profileResistance to infectionSamplingSepsisSolidSystemTechnologyTestingTimeTreatment CostWhole Bloodantimicrobialbacterial resistancebaseblood filtrationcarbapenem-resistant Enterobacteriaceaecarbapenemasedesigndiagnostic assaydrug resistant bacteriaeffective therapyfluorophoreglobal healthimprovedinhibitor/antagonistinterestmortalitymulti-drug resistant pathogenmultiplex detectionnovelpathogenpublic health relevanceresistance genesingle moleculesuccesstreatment strategy
项目摘要
DESCRIPTION (provided by applicant): Antibiotic resistance has emerged as a major public health threat. Patients infected with drug- resistant pathogens suffer significantly higher rates o morbidity and mortality, most often due to delays in the administration of effective antimicrobial therapies. In particular for bloodstream infections, the need to rapidly identify both pathogen and
resistance profile is crucial, as treatment with antibiotics to which the organism is sensitive is essential and time-critical. Indeed, sepsis is involved in up to half of all hospital deaths. Drug susceptibility information for a pathogen is typically not received by clinicians until at least 24
hours post-sampling, because of reliance on culture-based diagnostic methods. Recently, bloodstream infections caused by carbapenem-resistant Enterobacteriaceae (CRE) have become increasingly problematic. A rapid diagnostic assay for the detection and resistance determination of these pathogens is urgently needed. Although PCR-based assays are rapid, specific, and amenable to multiplexing, they have largely failed to perform in blood samples. Our industrial partner, Great Basin Corporation, has developed a fully disposable cartridge system for pathogen detection in cultured blood. We propose major improvements to this platform through the development of a multiplexed, non-amplified, non-cultured, nucleic acid-based assay for the detection and identification of multidrug resistant pathogens using a novel integrated optofluidic device. Bacteria will be concentrated directly from a blood sample by cross-flow filtration, and then delivered to a lysis and DNA-shearing chamber. Target DNAs containing the genes of interest will be captured on a solid substrate by hybridization. Molecular beacons will be hybridized to specific targets on the captured nucleic acids. These complexes will be released and specific beacons detected by an advanced optofluidics system capable of detecting single molecule fluorescence. We will demonstrate identification within one hour of bacteria in blood at levels as low as 10 CFU/mL. Initially, the focus will be to detect and characterize CRE isolated directly from a blood sample. The KPC, NDM, VIM, and IMP carbapenemase genes will be identified along with the simultaneous detection of specific markers for Klebsiella pneumoniae, Escherichia coli, and Enterobacter species. This platform is readily expandable to additional pathogens and their relevant antibiotic resistance genes. This technology has the potential to significantly reduce time to diagnosis and improve clinical outcomes.
描述(由申请人提供):抗生素耐药性已成为主要的公共卫生威胁,感染耐药病原体的患者发病率和死亡率显着升高,这通常是由于有效抗菌疗法的延迟施用所致。血流感染,需要快速识别病原体和
耐药性至关重要,因为使用对微生物敏感的抗生素进行治疗至关重要且时间紧迫。事实上,多达一半的医院死亡病例涉及病原体的药物敏感性信息。至少 24
由于对基于培养的诊断方法的依赖,最近,由碳青霉烯类耐药肠杆菌科细菌 (CRE) 引起的血流感染变得越来越成问题,迫切需要一种快速诊断方法来检测和确定这些病原体的耐药性。尽管基于 PCR 的检测快速、特异且易于多重检测,但它们在很大程度上无法在血液样本中执行。我们的工业合作伙伴 Great Basin Corporation 已开发出一种完全一次性的试剂盒系统,用于培养血液中的病原体检测。我们建议通过开发一种多重、非扩增、非培养、基于核酸的检测方法来对该平台进行重大改进,用于使用新型集成光流控装置来检测和鉴定多重耐药病原体,细菌将直接从浓缩物中浓缩。血液样本通过错流过滤,然后输送到裂解和 DNA 剪切室,通过杂交将含有感兴趣基因的目标 DNA 捕获在固体基质上。这些复合物将被释放,并由能够检测单分子荧光的先进光流控系统检测到特定的信标,我们将在一小时内证明血液中低至 10 CFU 水平的细菌的识别。最初,重点是检测和表征直接从血液样本中分离的 CRE,同时检测 KPC、NDM、VIM 和 IMP 碳青霉烯酶基因。该平台可轻松扩展到其他病原体及其相关抗生素耐药基因。该技术有可能显着缩短诊断时间并改善临床结果。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(2)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Aaron R. Hawkins其他文献
High sensitivity fluorescence detection with multi-spot excitation using Y-splitters
使用 Y 型分光器进行多点激发的高灵敏度荧光检测
- DOI:
10.1364/cleo_si.2013.cth3j.5 - 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
D. Ozcelik;J. Parks;L. Zempoaltecatl;Kealyn Leake;J. Black;Yaeji Lim;Holger Schmidt;Aaron R. Hawkins - 通讯作者:
Aaron R. Hawkins
Integration and characterization of SiN nanopores for single-molecule detection in liquid-core ARROW waveguides
用于液芯 ARROW 波导中单分子检测的 SiN 纳米孔的集成和表征
- DOI:
- 发表时间:
2007 - 期刊:
- 影响因子:0
- 作者:
M. Rudenko;D. Yin;M. Holmes;Aaron R. Hawkins;Holger Schmidt - 通讯作者:
Holger Schmidt
Fabrication of hollow waveguides with sacrificial aluminum cores
具有牺牲铝芯的空心波导的制造
- DOI:
- 发表时间:
2005 - 期刊:
- 影响因子:2.6
- 作者:
J. Barber;D. Conkey;J. R. Lee;Neal B. Hubbard;Larry L. Howell;D. Yin;H. Schmidt;Aaron R. Hawkins - 通讯作者:
Aaron R. Hawkins
Particle Concentration and Flowrates Using Electroactuated Nanopumps
使用电驱动纳米泵测量颗粒浓度和流量
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Wesley Collyer;Lars Flores;Samuel Lahti;Aaron R. Hawkins - 通讯作者:
Aaron R. Hawkins
Aaron R. Hawkins的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Aaron R. Hawkins', 18)}}的其他基金
Multiplexed, Non-Amplified, Nucleic Acid-Based Identification of Multidrug Resistant Pathogens Using an Integrated Optofluidic Platform
使用集成光流控平台对多重耐药病原体进行多重、非扩增、基于核酸的鉴定
- 批准号:
9441612 - 财政年份:2015
- 资助金额:
$ 100.28万 - 项目类别:
Rapid, low-cost mRNA analysis system for cancer companion diagnostics
用于癌症伴随诊断的快速、低成本 mRNA 分析系统
- 批准号:
8394718 - 财政年份:2012
- 资助金额:
$ 100.28万 - 项目类别:
相似国自然基金
基于Fe-N-BC/PMS体系的自由基与非自由基协同降解地下水中磺胺类抗生素的机制研究
- 批准号:42377036
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于可逆相分离构建靶向纳米抗生素用于克服CRE多重耐药机制的研究
- 批准号:82373781
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
放线菌吲哚-噁唑类抗生素的生物合成机制及其组合生物合成研究
- 批准号:32360009
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
基于量子点指纹图谱和深度卷积神经网络的水体抗生素检测方法研究
- 批准号:42307546
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
排水管网沉积物中抗生素对功能菌降解PAHs的影响机制
- 批准号:
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:
相似海外基金
Development of Targeted Antipseudomonal Bactericidal Prodrugs
靶向抗假单胞菌杀菌前药的开发
- 批准号:
10678074 - 财政年份:2023
- 资助金额:
$ 100.28万 - 项目类别:
Systems Epigenomics of Persistent Bloodstream Infection
持续性血流感染的系统表观基因组学
- 批准号:
10551703 - 财政年份:2023
- 资助金额:
$ 100.28万 - 项目类别:
An Integrated Catheter Dressing for Early Detection of Catheter-related Bloodstream Infections
用于早期检测导管相关血流感染的集成导管敷料
- 批准号:
10647072 - 财政年份:2023
- 资助金额:
$ 100.28万 - 项目类别:
Epigenomic Mechanisms & Contextual Immunity in Persistent MRSA Bacteremia
表观基因组机制
- 批准号:
10551708 - 财政年份:2023
- 资助金额:
$ 100.28万 - 项目类别: