Hybrid Antibiotics for Persistent Infections
用于持续感染的混合抗生素
基本信息
- 批准号:10780719
- 负责人:
- 金额:$ 86.09万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-26 至 2028-07-31
- 项目状态:未结题
- 来源:
- 关键词:AffectAntibiotic ResistanceAntibiotic TherapyAntibioticsBacteremiaBacteriaBinding ProteinsBiochemicalBiological AssayCell SurvivalCellsDNA-Directed RNA PolymeraseDataDepsipeptidesDiabetic Foot UlcerDoseDrug KineticsEnsureForeign BodiesGene Expression ProfilingGenetic TranscriptionGenus HippocampusGoalsGrowthHistopathologyHybridsIn VitroIndividualIndwelling CatheterInfectionInfective endocarditisInterphase CellLeadLesionMeasuresMicrobial BiofilmsMicrosomesMitochondriaModelingModificationMonitorMorbidity - disease rateMulti-Drug ResistanceMusMycobacterium tuberculosisNew AgentsPatient CarePeptide HydrolasesPeriprosthetic joint infectionPharmaceutical PreparationsPharmacologyPharmacology StudyPhasePlasmaPlasma ProteinsPopulationProteolysisProteomicsRNARNA Polymerase InhibitorRNA Synthesis InhibitionResistanceResistance developmentRifabutinRifampicin resistanceRifampinRifamycinsSafetySepticemiaSolubilityStaphylococcus aureusStructureStructure-Activity RelationshipSystemTestingThigh structureUreaVancomycinWorkacute infectionanalogantibiotic toleranceantimicrobialcare costschronic infectioncytotoxicitydensitydesignefficacy evaluationefficacy studyimprovedin vitro Assayin vivoin vivo Modelin vivo evaluationknowledge basemethicillin resistant Staphylococcus aureusmortalitymouse modelnovelpathogenpersistent bacteriapharmacologicpre-clinicalpreventrecurrent infectionresistance frequencyresistant strainscreeningsingle moleculestandard of caresubcutaneous
项目摘要
Abstract
The goal of this project is to optimize and study the pharmacology of dual-targeting urea depsipeptide
(UDEP)-rifamycin hybrid antibiotics. These new agents have encouraging potential to treat biofilm-
associated and complicated Gram-positive infections including bacteremia, prosthetic joint
infections, and infective endocarditis, which are difficult to cure with standard of care antibiotics such
as vancomycin and cause significant mortality. Most antibiotics require active bacterial growth to
work effectively. Some bacteria evade killing by traditional antibiotics by growing slowly or not at all,
allowing for survival even at high drug concentrations for prolonged periods. These surviving cells
contribute to antibiotic tolerance and resistance, cause recurrent infections, prolong antibiotic
therapy, and increase associated patient care costs. Recently, we have been using structure-based
design to optimize the pharmacology of UDEP antibiotics, which overcome antibiotic tolerance by
target non-dividing bacteria. UDEPs activate the ClpP protease causing uncontrolled proteolysis,
killing stationary phase, dormant, antibiotic-tolerant cells, and biofilms. Rifampin, currently
prescribed in combination with other antibiotics to treat M. tuberculosis (MTB) and prosthetic joint
infections (PJI), also has activity against non-dividing cells by inhibiting DNA-dependent RNA
polymerase and blocking RNA elongation during transcription. In addition to sharing activity against
slowly-growing bacteria, UDEPs and rifampin also share the requirement to be used in combination
with other antibiotics to prevent resistance development. We hypothesized that synthesizing a dual-
targeting UDEP-rifampin hybrid antibiotic would result in significantly less resistance development
and have the potential to achieve unprecedented activity against biofilms and difficult-to-treat
infections. A single molecule has many advantages over a combination, for example, there is no need
to match the pharmacokinetics, and dosing is simpler. In this proposal, we plan to carefully optimize
UDEP-Rifamycin hybrid antibiotics using a detailed synthesis and testing cascade to ensure agents are
developed that have potent activity against persisters in vitro and in vivo, and a safe pharmacological
profile. The mode of action of the emerging leads will be carefully profiled to study their target
engagement, resistance development, effects on growing and non-growing cells.
抽象的
该项目的目的是优化和研究双靶向尿素depspeptide的药理学
(UDEP) - 实霉素杂交抗生素。这些新代理具有令人鼓舞的潜力来治疗生物膜 -
相关且复杂的革兰氏阴性感染,包括菌血症,假体关节
感染和感染性心内膜炎,很难用标准的护理抗生素治愈
作为万古霉素并引起重大死亡率。大多数抗生素需要主动细菌生长
有效工作。一些细菌通过缓慢或根本不缓慢地生长而逃避传统抗生素的杀戮
允许长时间的药物浓度允许生存。这些幸存的细胞
有助于抗生素耐受性和耐药性,引起复发性感染,延长抗生素
治疗并增加相关的患者护理费用。最近,我们一直在使用基于结构的
设计以优化UDEP抗生素的药理学,从而克服抗生素耐受性
靶向非分裂细菌。 UDEPS激活CLPP蛋白酶,导致不受控制的蛋白水解,
杀死固定相,休眠,耐耐药细胞和生物膜。利福平目前
与其他抗生素结合使用以治疗结核分枝杆菌(MTB)和假体关节
感染(PJI)也通过抑制DNA依赖性RNA具有对非分裂细胞的活性
转录过程中的聚合酶和阻断RNA伸长率。除了分享活动反对
生长缓慢的细菌,UDEPS和利福平也共享了组合使用的要求
使用其他抗生素来防止耐药性发展。我们假设合成双重
靶向UDEP-RIFAMPIN杂交抗生素将导致耐药性的发展明显降低
并有可能实现针对生物膜和难以治疗的前所未有的活动
感染。一个分子比组合具有许多优势,例如,没有必要
要匹配药代动力学和剂量更简单。在此提案中,我们计划仔细优化
UDEP-富霉素杂交抗生素使用详细的合成和测试级联反应,以确保剂是
开发的,在体外和体内具有强大的活动,以及安全的药理
轮廓。新兴线索的行动方式将仔细介绍以研究其目标
参与,耐药性发展,对生长和非生长细胞的影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael LaFleur其他文献
Michael LaFleur的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael LaFleur', 18)}}的其他基金
Targeting NuoD for the treatment of H. pylori
靶向 NuoD 治疗幽门螺杆菌
- 批准号:
10659783 - 财政年份:2023
- 资助金额:
$ 86.09万 - 项目类别:
Development of a Dual-Targeting ClpP Activating Antibiotic
双靶点 ClpP 激活抗生素的开发
- 批准号:
10760586 - 财政年份:2023
- 资助金额:
$ 86.09万 - 项目类别:
A New Approach to Treat Prosthetic Joint Infections with a ClpP Activating Antibiotic
使用 ClpP 激活抗生素治疗假体关节感染的新方法
- 批准号:
10576404 - 财政年份:2021
- 资助金额:
$ 86.09万 - 项目类别:
A New Approach to Treat Prosthetic Joint Infections with a ClpP Activating Antibiotic
使用 ClpP 激活抗生素治疗假体关节感染的新方法
- 批准号:
10365956 - 财政年份:2021
- 资助金额:
$ 86.09万 - 项目类别:
Development of ureadepsipetides for drug-resistant infections
治疗耐药感染的脲肽肽的开发
- 批准号:
10525228 - 财政年份:2018
- 资助金额:
$ 86.09万 - 项目类别:
Development of ureadepsipetides for drug-resistant infections
治疗耐药感染的脲肽肽的开发
- 批准号:
10308010 - 财政年份:2018
- 资助金额:
$ 86.09万 - 项目类别:
Development of ureadepsipetides for drug-resistant infections
治疗耐药感染的脲肽肽的开发
- 批准号:
10063811 - 财政年份:2018
- 资助金额:
$ 86.09万 - 项目类别:
Bactericidal antibiotic for Vancomycin Resistant Enterococci
针对万古霉素耐药肠球菌的杀菌抗生素
- 批准号:
9243208 - 财政年份:2016
- 资助金额:
$ 86.09万 - 项目类别:
相似国自然基金
基于高通量测序和培养组学的伴侣动物-人抗生素抗性基因分布特征及传播研究
- 批准号:82373646
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
手性酰胺类农药污染的农业土壤中抗生素抗性基因传播扩散的对映选择性机制
- 批准号:42377238
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
猪粪水热炭对红壤-蔬菜系统中抗生素抗性基因的风险控制及其机理
- 批准号:42307038
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
蚯蚓-菌根协同消减抗生素抗性基因的微生物驱动机制
- 批准号:32301448
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
生物炭对厌氧膜生物反应器抑制畜禽养殖废水中抗生素抗性基因的调控作用和机制
- 批准号:52300210
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
A Novel Sublingual Vaccine to Prevent Neisseria Gonorrhoeae Infection
预防淋病奈瑟菌感染的新型舌下疫苗
- 批准号:
10699065 - 财政年份:2023
- 资助金额:
$ 86.09万 - 项目类别:
Investigating the Contribution of the Coxiella Cell Wall to Intracellular Pathogenesis
研究柯克斯体细胞壁对细胞内发病机制的贡献
- 批准号:
10593290 - 财政年份:2023
- 资助金额:
$ 86.09万 - 项目类别:
Investigating metabolism and DNA damage repair in uropathogenic Escherichia coli fluoroquinolone persisters
研究泌尿道致病性大肠杆菌氟喹诺酮类持续存在的代谢和 DNA 损伤修复
- 批准号:
10747651 - 财政年份:2023
- 资助金额:
$ 86.09万 - 项目类别:
Molecular Mechanisms of Pseudomonas aeruginosa Antibiotic Persistence in Monocultures and Microbial Communities
单一栽培和微生物群落中铜绿假单胞菌抗生素持久性的分子机制
- 批准号:
10749974 - 财政年份:2023
- 资助金额:
$ 86.09万 - 项目类别:
Intestinal Microbiota Affect Stroke Outcome by Modulating the Dendritic Cell-regulatory T Cell Axis
肠道微生物群通过调节树突状细胞调节 T 细胞轴影响中风结果
- 批准号:
10751249 - 财政年份:2023
- 资助金额:
$ 86.09万 - 项目类别: