Investigating metabolism and DNA damage repair in uropathogenic Escherichia coli fluoroquinolone persisters
研究泌尿道致病性大肠杆菌氟喹诺酮类持续存在的代谢和 DNA 损伤修复
基本信息
- 批准号:10747651
- 负责人:
- 金额:$ 4.34万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-08 至 2026-09-07
- 项目状态:未结题
- 来源:
- 关键词:AddressAdjuvantAffectAftercareAnabolismAntibiotic TherapyAntibioticsBacteriaBacterial InfectionsBacterial PhysiologyBiological AssayCarbonCell SurvivalCellsChargeChemicalsChemistryChemosensitizationChimeric ProteinsClinicalComplementDNADNA BindingDNA DamageDNA RepairDNA Repair GeneDNA TopoisomerasesDNA biosynthesisDNA lesionDataDevelopmentEnvironmentEscherichia coliEscherichia coli InfectionsEventExcisionFlow CytometryFluorescenceFluorescence MicroscopyFluorescence-Activated Cell SortingFluorescent Antibody TechniqueFluorescent DyesFluoroquinolonesFrequenciesFutureGene ExpressionGenesGeneticGenetic TranscriptionGlucoseGrowthInfectionKnowledgeMass Spectrum AnalysisMeasuresMetabolicMetabolismMicroscopyModelingMolecularMutationNucleic AcidsNucleotidesNutrientNutrient availabilityPersonsPharmaceutical PreparationsPhenotypePhysiologyPopulationPredispositionRNARecoveryRecurrenceRelapseReporterResearchResistanceResistance developmentSortingSourceStressSystemTestingTopoisomeraseTranslatingTreatment FailureUrinary tractUrinary tract infectionUrineUropathogenic E. coliadenylateantibiotic tolerancebacterial metabolismbactericidedifferential expressiondrug resistant pathogenexperimental studygenetic approachimprovedinsightmetabolomicsmicrobial diseasemutantnon-geneticnutrient deprivationpersistent bacteriaprogramsrepairedresponsesuccesstranscriptome sequencingtreatment response
项目摘要
PROJECT SUMMARY:
Uropathogenic Escherichia coli (UPEC) is one of the major causative agents of urinary tract infections (UTIs).
With growing frequency of antibiotic treatment failure and slowing of antibiotic discovery, the rate of recurrent
UTIs is poised to continue to increase. Although antibiotic resistant pathogens are of particular concern,
treatment failure can often occur by non-genetic mechanisms, without detectable resistance. One of the non-
genetic mechanisms of antibiotic treatment failure—persistence—is characterized by antibiotic tolerance in a
small group of cells among a susceptible population. Bacterial persisters, which can reversibly exit the antibiotic-
tolerant state following drug removal, is able to repopulate an infection and impede success of treatment.
Persisters are known to be enriched in slow growing populations, where overall cellular activity and metabolism
is reduced; however, there is a lack of knowledge on how the surrounding nutrient environment can affect
bacterial physiology, and how these factors affect susceptibility to antibiotics.
Our central objective is to determine the impact of carbon source availability on UPEC persistence to
fluoroquinolone (FQ) antibiotics, which are bactericidal through the targeting of DNA topoisomerases and the
accumulation of DNA damage. Aim 1 aims to address changes to metabolism, biomolecular synthesis, and DNA
integrity in response to carbon source availability during FQ treatment. We will assess these factors by
performing experiments with fluorescence-based probes, as well as mass spectrometry analysis of metabolites.
These data will elucidate the ways by which carbon source availability can impact the susceptibility of cells to
FQs, allowing us to explore specific mechanisms as potentiation targets. Aim 2 will enable us to understand how
the coordination of DNA damage response changes due to carbon source availability after FQ treatment. We
will deploy powerful genetic approaches and RNA sequencing in E. coli to interrogate the timing of gene
expression and DNA repair. Completion of this aims will provide great insight into the importance of various DNA
repair mechanisms in response to FQ treatment.
Overall, the completion of these aims will reveal metabolic, biosynthetic, and expressional changes that underlie
FQ persistence in E. coli. This information could illuminate potential genes that can be targeted to potentiate the
activity of FQs and reduce resistance development in persister progenies. Additionally, these findings could lead
to interesting implications for clinical infections, with a potential connection between host metabolism and
antibiotic efficacy. This research could highlight the potential of adding glucose, as well as other metabolites, as
supplemented compounds during antibiotic administration to improve the treatment of infections.
项目摘要:
尿道病大肠杆菌(UPEC)是尿路感染(UTI)的主要结构药物之一。
随着抗生素治疗衰竭频率的增长和抗生素发现减慢的频率,复发率
UTI被中毒以继续增加。尽管抗生素耐药病原体特别关注
通常没有可检测的耐药性,通常会通过非遗传机制发生治疗失败。非 -
抗生素治疗衰竭的遗传机制 - 垂直性 - 以抗生素耐受性为特征
易感人群中的小组细胞。细菌持久性可以可逆地退出抗生素 -
去除药物后的耐受状态,能够重新填充感染并阻碍治疗的成功。
众所周知,在整体细胞活性和代谢中,持久者富集了人群中的慢速人群
减少;但是,缺乏关于周围营养环境如何影响的知识
细菌生理学以及这些因素如何影响抗生素的易感性。
我们的核心目的是确定碳源可用性对UPEC持久性的影响
氟喹诺酮(FQ)抗生素,通过靶向DNA拓扑异构酶和
DNA损伤的积累。 AIM 1的目的是解决对代谢,生物分子合成和DNA的变化
响应FQ处理期间碳源可用性的完整性。我们将通过
对基于荧光的问题进行实验,以及代谢物的质谱分析。
这些数据将阐明碳源可用性可以影响细胞的敏感性的方式
FQ,使我们能够探索特定机制作为潜在目标。 AIM 2将使我们能够了解如何
FQ处理后碳源可用性导致的DNA损伤响应的协调变化。我们
将在大肠杆菌中部署强大的遗传方法和RNA测序以询问基因的时间
表达和DNA修复。完成此目标的完成将为各种DNA的重要性提供深刻的了解
响应FQ治疗的修复机制。
总体而言,这些目标的完成将揭示代谢,生物合成和表达变化,这是基础的
大肠杆菌中的FQ持久性。这些信息可以照亮可以针对潜在的潜在基因
FQ的活性并降低持久后代的抵抗力发展。此外,这些发现可能会带来
对临床感染的有趣含义,宿主代谢和
抗生素效率。这项研究可能突出添加葡萄糖以及其他代谢产物的潜力
补充抗生素给药期间的化合物以改善感染的治疗。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
TRAVIS LAGREE其他文献
TRAVIS LAGREE的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
Long-TSLP和Short-TSLP佐剂对新冠重组蛋白疫苗免疫应答的影响与作用机制
- 批准号:
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:面上项目
Long-TSLP和Short-TSLP佐剂对新冠重组蛋白疫苗免疫应答的影响与作用机制
- 批准号:32170937
- 批准年份:2021
- 资助金额:58.00 万元
- 项目类别:面上项目
新疆一枝蒿多糖佐剂影响DCs调控Th1/Th2免疫应答的重要机制
- 批准号:31960164
- 批准年份:2019
- 资助金额:40 万元
- 项目类别:地区科学基金项目
草甘膦除草剂中佐剂对大豆根际土壤微生物群落的影响及其机制研究
- 批准号:31870495
- 批准年份:2018
- 资助金额:60.0 万元
- 项目类别:面上项目
亚细胞环境响应性的纳米材料与TLR激动剂复合制剂对疫苗免疫原性的影响
- 批准号:31600812
- 批准年份:2016
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Anti-flavivirus B cell response analysis to aid vaccine design
抗黄病毒 B 细胞反应分析有助于疫苗设计
- 批准号:
10636329 - 财政年份:2023
- 资助金额:
$ 4.34万 - 项目类别:
A Novel Assay to Improve Translation in Analgesic Drug Development
改善镇痛药物开发转化的新方法
- 批准号:
10726834 - 财政年份:2023
- 资助金额:
$ 4.34万 - 项目类别:
Validation of the joint-homing and drug delivery attributes of novel peptides in a mouse arthritis model
在小鼠关节炎模型中验证新型肽的关节归巢和药物递送特性
- 批准号:
10589192 - 财政年份:2023
- 资助金额:
$ 4.34万 - 项目类别:
Cellular mechanisms for the degeneration and aging of human rotator cuff tears
人类肩袖撕裂变性和衰老的细胞机制
- 批准号:
10648672 - 财政年份:2023
- 资助金额:
$ 4.34万 - 项目类别:
Intra-Articular Drug Delivery Modulating Immune Cells in Inflammatory Joint Disease
关节内药物递送调节炎症性关节疾病中的免疫细胞
- 批准号:
10856753 - 财政年份:2023
- 资助金额:
$ 4.34万 - 项目类别: