Exploration of Arrhythmogenic Triggers and Substrates in Heart Failure
心力衰竭致心律失常触发因素和基质的探索
基本信息
- 批准号:9392927
- 负责人:
- 金额:$ 66.41万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-01-01 至 2019-11-30
- 项目状态:已结题
- 来源:
- 关键词:Adrenergic AgentsAffectArrhythmiaBehaviorCardiac MyocytesCaveolaeCell physiologyCellsCessation of lifeChemosensitizationClinical ResearchComplexCouplingDataDevelopmentDiseaseElectrophysiology (science)FiberFibrosisGenerationsGenesGeometryHealth ExpendituresHealthcare SystemsHeartHeart RateHeart failureHeterogeneityHospitalizationHot SpotHumanIncidenceIon ChannelLinkLocationMRI ScansMembraneModelingMolecularMorbidity - disease rateMuscle CellsOrganPathologicPatientsPharmacologyPhosphorylationProteinsResearchResolutionRestRiskRisk stratificationScanningSignal TransductionSourceStructureSudden DeathThinnessTubular formationValidationVentricularVentricular Fibrillationaging populationend of lifeexperimental studyglobal healthimprovedinsightmortalitynerve supplynon-Nativenovelpatch clamppreventpublic health relevancesimulationspatiotemporalstatisticssudden cardiac deathvoltage
项目摘要
DESCRIPTION (provided by applicant): Heart failure (HF) is a major cause of morbidity and mortality, contributing significantly to global health expenditure. Sudden death due to arrhythmia
is responsible for over 50% of deaths among HF patients; however, the mechanisms linking HF-induced molecular remodeling to increased sudden death risk remain poorly understood. This has resulted in ineffective pharmacologic therapy for preventing sudden arrhythmic death and in inadequate approaches to arrhythmia risk stratification of HF patients. The overall objective of the proposed research is to explore a novel set of mechanisms by which HF remodeling, from the sub-cellular microdomain to the whole heart, leads to increased risk of lethal arrhythmias in human HF. Specifically, we propose to investigate how the impact of the degradation of myocyte microdomains on L-type Ca channel and cellular function is amplified regionally by the heterogeneities in electrophysiological remodeling and adrenergic innervation as well as by the disease-induced remodeling in ventricular structure to produce i) arrhythmia triggers and ii) their
degeneration into ventricular fibrillation (VF). The project presents an integrated experimental/computational approach to arrhythmogenesis in human HF. Super-resolution scanning patch clamp will provide novel insight into how disruption of sub-cellular compartments affects L-type Ca channel functioning in the HF cell. This data will be used as input into an integrative human HF myocyte model, which following validation, will be implemented in organ-level HF models. Protein and microstructure distribution data informing the organ-level models will be gathered in experiments with explanted HF human hearts. Model components will be combined with MRI scans of HF human heart geometry/structure to develop multiscale HF ventricular models which will then be used to determine the mechanisms responsible for the formation of 1) "hot spots", from which triggered activity emanates, and 2) arrthythmogenic substrates at heart rates near rest, causing the degradation of triggered activity into VF. Simulation results regarding the arrhythmogenic substrate and VF likelihood at these heart rates will be validated in a clinical study of HF patients. Completion of the studies proposed here will result in a greater understanding of the mechanisms leading to arrhythmias and sudden death in human HF. Such mechanistic understanding is expected to reduce the impact of HF on its victims and on the health-care system 1) by suggesting targeted and effective new molecular therapies, and 2) by leading to new and improved approaches to arrhythmia risk stratification of HF patients.
描述(由申请人提供):心力衰竭 (HF) 是发病和死亡的主要原因,对全球因心律失常导致的猝死造成重大影响。
超过 50% 的心力衰竭患者死亡是由心力衰竭引起的;然而,人们对心力衰竭引起的分子重塑与猝死风险增加之间的联系仍知之甚少,这导致预防心律失常死亡的药物治疗无效,且心律失常风险的治疗方法不充分。拟议研究的总体目标是探索一套新的机制,通过这些机制,从亚细胞微区到整个心脏的心力衰竭重塑会导致致命风险增加。具体来说,我们建议研究肌细胞微区降解对 L 型 Ca 通道和细胞功能的影响如何通过电生理重塑和肾上腺素神经支配的异质性以及疾病诱导的重塑而局部放大。在心室结构中产生 i) 心律失常触发因素和 ii) 它们的
该项目提出了一种研究人类心力衰竭心律失常发生的综合实验/计算方法,将为了解亚细胞区室的破坏如何影响 L 型 Ca 通道功能提供新的见解。 HF 细胞。该数据将用作综合人类 HF 肌细胞模型的输入,经过验证后,将在器官水平 HF 模型中实施,从而提供信息。器官级模型将在移植的 HF 人类心脏的实验中收集,模型组件将与 HF 人类心脏几何/结构的 MRI 扫描相结合,以开发多尺度 HF 心室模型,然后将其用于确定负责形成的机制。 1)“热点”,从中发出触发活动,以及 2) 心率接近静息时的致心律失常底物,导致触发活动退化为室颤 关于致心律失常底物和的模拟结果。这些心率下的室颤可能性将在心力衰竭患者的临床研究中得到验证。完成此处提出的研究将有助于更好地了解导致人类心力衰竭和猝死的机制。心力衰竭对其受害者和医疗保健系统的影响 1) 通过建议有针对性的有效的新分子疗法,2) 通过提出新的和改进的方法对心力衰竭患者进行心律失常风险分层。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
IGOR R EFIMOV其他文献
IGOR R EFIMOV的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('IGOR R EFIMOV', 18)}}的其他基金
Optimization of electromechanical monitoring of engineered heart tissues
工程心脏组织机电监测的优化
- 批准号:
10673513 - 财政年份:2023
- 资助金额:
$ 66.41万 - 项目类别:
Reagentless Sensor Technologies For Continuous Monitoring of Heart Failure Biomarkers
用于连续监测心力衰竭生物标志物的无试剂传感器技术
- 批准号:
10636089 - 财政年份:2023
- 资助金额:
$ 66.41万 - 项目类别:
Graphene optoelectronic biointerfaces for enabling optical cardiac pacemaking
用于实现光学心脏起搏的石墨烯光电生物界面
- 批准号:
10651242 - 财政年份:2020
- 资助金额:
$ 66.41万 - 项目类别:
Graphene optoelectronic biointerfaces for enabling optical cardiac pacemaking
用于实现光学心脏起搏的石墨烯光电生物界面
- 批准号:
10163905 - 财政年份:2020
- 资助金额:
$ 66.41万 - 项目类别:
High-Definition Conformal Electronics for VT/VF
适用于 VT/VF 的高清保形电子器件
- 批准号:
10661291 - 财政年份:2019
- 资助金额:
$ 66.41万 - 项目类别:
Comprehensive Structural and Functional Mapping of the Mammalian Cardiac Nervous System
哺乳动物心脏神经系统的全面结构和功能图谱
- 批准号:
10428804 - 财政年份:2016
- 资助金额:
$ 66.41万 - 项目类别:
Exploration of Arrhythmogenic Triggers and Substrates in Heart Failure
心力衰竭致心律失常触发因素和基质的探索
- 批准号:
9198047 - 财政年份:2016
- 资助金额:
$ 66.41万 - 项目类别:
Comprehensive Structural and Functional Mapping of the Mammalian Cardiac Nervous System
哺乳动物心脏神经系统的全面结构和功能图谱
- 批准号:
10202966 - 财政年份:2016
- 资助金额:
$ 66.41万 - 项目类别:
Near-infrared optogenetic control of the human heart
人类心脏的近红外光遗传学控制
- 批准号:
9357602 - 财政年份:2016
- 资助金额:
$ 66.41万 - 项目类别:
相似国自然基金
CIRBP负向调控心肌钾离子通道表达影响恶性心律失常易感性
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
右前神经节丛刺激对心肌梗死后心功能衰竭及恶性心律失常的影响及机制
- 批准号:
- 批准年份:2021
- 资助金额:55 万元
- 项目类别:面上项目
系统研究神经型一氧化氮合成酶影响肌纤维钙缓冲和钙平衡促进脂肪酸诱发高血压心律失常的分子机制
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
线粒体铁蛋白负向调控心肌细胞铁死亡对心肌梗死后快速室性心律失常的影响和机制研究
- 批准号:
- 批准年份:2021
- 资助金额:55 万元
- 项目类别:面上项目
胸部皮下神经刺激抑制星状神经节活性对急性心肌梗死后心律失常及心脏电生理特性的影响
- 批准号:82000308
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:青年科学基金项目
相似海外基金
A full spectrum rational approach to identify antiarrhythmic agents targeting IKs Channels
识别针对 IK 通道的抗心律失常药物的全谱理性方法
- 批准号:
10734513 - 财政年份:2023
- 资助金额:
$ 66.41万 - 项目类别:
Cellular Basis for Autonomic Regulation of Cardiac Arrhythmias
心律失常自主调节的细胞基础
- 批准号:
10627578 - 财政年份:2023
- 资助金额:
$ 66.41万 - 项目类别:
The role of VSNL1 in human heart rate regulation
VSNL1在人体心率调节中的作用
- 批准号:
10750747 - 财政年份:2023
- 资助金额:
$ 66.41万 - 项目类别:
Ryanodine receptor structure and function in heart failure
Ryanodine 受体结构和心力衰竭中的功能
- 批准号:
10628917 - 财政年份:2023
- 资助金额:
$ 66.41万 - 项目类别:
Partial and Controlled Depletion of SR Calcium by RyR Agonists Prevents Calcium-dependent Arrhythmias
RyR 激动剂部分且受控地消耗 SR 钙可预防钙依赖性心律失常
- 批准号:
10577630 - 财政年份:2023
- 资助金额:
$ 66.41万 - 项目类别: