Data Center for Acute to Chronic Pain Biosignatures
急性至慢性疼痛生物特征数据中心
基本信息
- 批准号:9812376
- 负责人:
- 金额:$ 29.96万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-01 至 2023-07-31
- 项目状态:已结题
- 来源:
- 关键词:AcuteAwarenessBehaviorBehavior assessmentBehavioralBiometryCellular PhoneClinicalClinical DataCloud ComputingCodeCollaborationsCommunicationCommunitiesComputer softwareCountryCustomDataData AnalysesData QualityData ScienceData ScientistData SetData Storage and RetrievalDatabasesDevelopmentEducationEducational workshopElectronic Health RecordEnrollmentEnvironmentEpidemicFacultyFundingGap JunctionsGenomicsHigh Performance ComputingImageImageryInformaticsInfrastructureInstitutionInternetIntranetLeadMachine LearningMeasuresMetadataMethodsModelingPainPatientsPeripheralPersonsPhysiologyProcessProductivityProteomicsProtocols documentationPythonsQuality ControlRecording of previous eventsResearch PersonnelResourcesRestRunningScienceScientistSensorySideSoftware EngineeringStandardizationStructureSystemTestingTexasTrainingTraining ProgramsUnited States National Institutes of HealthUniversitiesUpdateWagesWearable ComputerWorkanalysis pipelinebasebiosignaturechronic painclinical paincloud basedcluster computingcyber infrastructuredata accessdata integrationdata pipelinedata portaldata resourcedata submissiondeep learningdesignelectronic bookexperiencehealth datamassive open online coursesmeetingsmembermultimodal dataneuroimagingonline courseopioid useoutreachoutreach programpain modelpredictive modelingprogramsprospectiveresponseskillssocial mediastatisticstooluser-friendly
项目摘要
Understanding the mechanisms underlying the transition to chronic pain is a key to
mitigating the dual epidemics of chronic pain and opioid use in the U.S. In response to
RFA-RM-18-031, and as part of the NIH Common Fund Acute to Chronic Pain
Signatures (A2CPS) Program, we will establish a Data Integration and Resource Center
(DIRC) to integrate imaging, physiology, -omics, behavioral, and clinical data to develop
biosignatures for the transition to chronic pain. The Center will be based in the
Department of Biostatistics at JHU, a nexus for a wide range of collaborators with
expertise in (1) advanced data science and machine learning, (2) neuroimaging, (3)
genomics and related -omics, (4) wearable computing and smartphone-based behavioral
assessment, (5) systems-level predictive biosignatures, (6) software engineering and
high-performance computing, and (7) world-renowned pain researchers from JHU and
other institutions. JHU Biostatistics is the top-ranked department of its kind in the
country, and its unique blend of faculty provides the ability to be nimble and
accommodate analysis of diverse data types as needed, and a unique capacity for
scientific outreach through online courses and other forums. To deliver computing
infrastructure and cloud-based computing for A2CPS, we partner with the Texas
Advanced Computing Center (TACC), who have a long track record of large-scale
collaborations and have already built many of the cloud computing tools we see as ideal
for this project. The Center will consist of three components and an Administrative Core.
The Administrative Core will lead the Center and facilitate interaction among the
components of the Center and across the A2CPS consortium. The Data Coordination
Component (DCC) will provide the infrastructure for storage and processing, analysis
pipelines, cloud computing, and portals for data upload/query/export, in addition to other
technical deliverables. The Data Integration and Analysis Component (DIAC) will
provide data type-specific content for pipelines and analyses of data collected by the
A2CPS consortium. The Scientific Outreach Component (SOC) will use DCC-
developed portal infrastructure to maintain the consortium intranet and perform outreach
via the public A2CPS portal. It will also organize a variety of in-person and online training
and outreach programs, including the creation of free, online courses disseminating
information about chronic pain and A2CPS tools, data, and models.
了解过渡到慢性疼痛的机制是
缓解美国慢性疼痛和阿片类药物使用的双重流行
RFA-RM-18-031,作为NIH共同基金的一部分,慢性疼痛
签名(A2CPS)程序,我们将建立数据集成和资源中心
(DIRC)整合成像,生理学, - 组,行为和临床数据以发展
过渡到慢性疼痛的生物签名。该中心将基于
JHU生物统计学系,与广泛合作者的联系
(1)高级数据科学和机器学习方面的专业知识,(2)神经影像学,(3)
基因组学及相关 - (4)可穿戴计算和基于智能手机的行为
评估,(5)系统级预测生物签名,(6)软件工程和
高性能计算以及(7)JHU和
其他机构。 JHU生物统计学是同类产品中排名第一的部门
国家及其独特的教师融合提供了敏捷和
根据需要适应各种数据类型的分析,并具有独特的能力
通过在线课程和其他论坛的科学宣传。提供计算
为A2CPS的基础架构和基于云的计算,我们与德克萨斯州合作
高级计算中心(TACC),他们的大规模记录很长
协作,已经构建了许多我们认为是理想的云计算工具
对于这个项目。该中心将由三个组件和一个管理核心组成。
行政核心将领导中心,并促进
中心的组成部分以及整个A2CPS联盟。数据协调
组件(DCC)将提供用于存储和处理的基础架构,分析
除其他
技术可交付成果。数据集成和分析组件(DIAC)将
提供针对管道的数据类型的内容,并分析由
A2CPS联盟。科学外展部分(SOC)将使用DCC-
开发了门户基础设施以维持联盟内部网络并进行外展
通过公共A2CPS门户。它还将组织各种面对面和在线培训
和外展计划,包括创建免费的在线课程
有关慢性疼痛和A2CPS工具,数据和模型的信息。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Martin Lindquist其他文献
Martin Lindquist的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Martin Lindquist', 18)}}的其他基金
Personalized spatiotemporal hemodynamic response models for functional magnetic resonance imaging
用于功能磁共振成像的个性化时空血流动力学响应模型
- 批准号:
10705163 - 财政年份:2022
- 资助金额:
$ 29.96万 - 项目类别:
Personalized spatiotemporal hemodynamic response models for functional magnetic resonance imaging
用于功能磁共振成像的个性化时空血流动力学响应模型
- 批准号:
10585582 - 财政年份:2022
- 资助金额:
$ 29.96万 - 项目类别:
Data Center for Acute to Chronic Pain Biosignatures
急性至慢性疼痛生物特征数据中心
- 批准号:
10468273 - 财政年份:2019
- 资助金额:
$ 29.96万 - 项目类别:
Data Center for Acute to Chronic Pain Biosignatures
急性至慢性疼痛生物特征数据中心
- 批准号:
10863408 - 财政年份:2019
- 资助金额:
$ 29.96万 - 项目类别:
Data Center for Acute to Chronic Pain Biosignatures
急性至慢性疼痛生物特征数据中心
- 批准号:
10789239 - 财政年份:2019
- 资助金额:
$ 29.96万 - 项目类别:
相似国自然基金
情境意识驱动的跨平台知识交流行为及其价值共创研究
- 批准号:72374159
- 批准年份:2023
- 资助金额:41 万元
- 项目类别:面上项目
DMH区Orexin能冷敏感神经元整合调控意识与行为的神经环路机制研究
- 批准号:32371203
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
多维度刺激联合微行为检测的意识障碍患者评估新方法及其机制研究
- 批准号:U22A20293
- 批准年份:2022
- 资助金额:255.00 万元
- 项目类别:联合基金项目
内侧前额叶皮层在意识性主动排尿行为中的作用及机制研究
- 批准号:32100912
- 批准年份:2021
- 资助金额:24.00 万元
- 项目类别:青年科学基金项目
内侧前额叶皮层在意识性主动排尿行为中的作用及机制研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
An Integrated Model of Contextual Safety, Social Safety, and Social Vigilance as Psychosocial Contributors to Cardiovascular Disease
情境安全、社会安全和社会警惕作为心血管疾病社会心理因素的综合模型
- 批准号:
10749134 - 财政年份:2024
- 资助金额:
$ 29.96万 - 项目类别:
Dynamic multimodal parent emotion socialization processes as risk processes for school-aged girls’ internalizing problems
动态多模式父母情绪社会化过程作为学龄女孩的风险过程——内化问题
- 批准号:
10607097 - 财政年份:2023
- 资助金额:
$ 29.96万 - 项目类别:
Screen Smart: Using Digital Health to Improve HIV Screening and Prevention for Adolescents in the Emergency Department
智能屏幕:利用数字健康改善急诊科青少年的艾滋病毒筛查和预防
- 批准号:
10711679 - 财政年份:2023
- 资助金额:
$ 29.96万 - 项目类别:
A Translational Research Approach to Healthy Technology Usage in Language-Minority Families with Young Children
有幼儿的语言少数群体家庭健康技术使用的转化研究方法
- 批准号:
10822222 - 财政年份:2023
- 资助金额:
$ 29.96万 - 项目类别:
The effect of medical school, residency program, and health system board diversities on racial and ethnic disparities in AD/ADRD care.
医学院、住院医师计划和卫生系统董事会多元化对 AD/ADRD 护理中种族和民族差异的影响。
- 批准号:
10727757 - 财政年份:2023
- 资助金额:
$ 29.96万 - 项目类别: