Personalized spatiotemporal hemodynamic response models for functional magnetic resonance imaging
用于功能磁共振成像的个性化时空血流动力学响应模型
基本信息
- 批准号:10705163
- 负责人:
- 金额:$ 76.51万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-15 至 2027-07-31
- 项目状态:未结题
- 来源:
- 关键词:AccountingAddressAffectAffectiveAgeAgingAnxietyAreaAtlasesBiophysicsBlood VesselsBody mass indexBrainBrain regionCharacteristicsClinicalClinical ResearchCodeCognitionCognitiveCommunitiesComplexComputer softwareCouplingDataData SetDevelopmentDiseaseEcosystemEstimation TechniquesFunctional Magnetic Resonance ImagingFutureGrantHumanImageIndividualKnowledgeLinkLongevityMapsMeasurableMeasuresMental DepressionMental HealthMental ProcessesMental disordersMethodsModelingMoodsMorphologic artifactsNeurosciencesPaperParameter EstimationParticipantPatientsPersonsPhenotypePopulationPost-Traumatic Stress DisordersProcessProxyReproducibilityResearchRestSamplingSeriesShapesSignal TransductionSocioeconomic StatusStatistical ModelsStructureSubstance abuse problemSymptomsTechniquesTestingTimeVariantWorkage relatedagedcognitive functioncognitive neuroscienceconnectomeconnectome datadepressed patienthealthy aginghemodynamicshigh body mass indexhuman dataindividual variationinterestlow socioeconomic statusmemory retrievalmental functionneuralneuroimagingneurovascularneurovascular couplingnext generationnovelpathological agingpopulation stratificationregional differenceresponsesecondary analysissexspatiotemporalstatisticssubstance misusesubstance usevirtual
项目摘要
Functional Magnetic Resonance Imaging (fMRI) shows great promise in characterizing
brain circuits and networks related to human mental function and identifying
pathophysiological changes underlying mental health disorders, healthy and pathological
aging, substance misuse, and beyond. Great strides are being made in many areas, but
the vast majority of fMRI research relies on the simplifying assumption of a canonical (or
highly constrained) hemodynamic response function (HRF) that is substantially
inaccurate. The HRF varies across brain regions, individuals, and age, but estimating it
with sufficient accuracy and precision is problematic in small to medium-sized studies.
As a result, over 95% of fMRI studies use a canonical HRF of fixed form. This results in
substantial bias, power loss, and confounding. These problems apply to both task-based
and connectivity studies, which rely implicitly on the assumption of a constant HRF
across regions and individuals. In response to the “Notice of Special Interest (NOSI)
regarding the Use of Human Connectome [HCP] Data for Secondary Analysis”,
propose to use the Lifespan
aged 5-100) combined with advanced statistical modeling t
we
HCP data (n=~3,600 high-quality datasets from people
o address this issue. In Aim
1, we will contrast commonly used HRF models across the lifespan based on reliability
and ability to ‘decode’ task state and phenotypic variables (e.g., cognitive function and
mood). We develop novel methods for extracting meaningful phenotypic information
from HRF shape and population inference, and develop robust software for best-in-class
models. In Aim 2, we integrate best-in-class HRF models into a novel Gaussian process
model and use it derive a demographic-specific, spatiotemporal HRF atlas, providing
customized HRFs based on readily measurable characteristics (age, sex, and body-
mass index) and brain region. In Aim 3, we use the HRF atlas to deconvolve rs-fMRI
data and construct an HRF-corrected connectome map. We validate the HRF models,
atlas, and connectome on two independent HCP Disease Connectomes and the CAM-
CAN dataset (n=~700), and share the atlas, connectome, and software integrations with
the research community. The development of these large-sample models will provide
more accurate and precise estimates of task-related fMRI activity and connectivity in
basic and clinical studies of mental health, aging, substance use, and beyond.
功能磁共振成像(fMRI)表现出很大的前景
脑电路和与人类心理功能有关的网络和识别
健康和病理学的心理健康障碍的病理生理变化
衰老,滥用物质以及以下。在许多领域都取得了长足的进步,但是
绝大多数fMRI研究都依赖于规范的简化假设(或
高度约束)血液动力学反应函数(HRF)基本上是
不准确。人力资源管理范围跨大脑区域,个体和年龄,但估算
在中小型研究中,具有足够的准确性和精度是有问题的。
结果,超过95%的fMRI研究使用了固定形式的规范HRF。这导致
实质性偏见,功率损失和混杂。这些问题适用于两个基于任务的问题
和连通性研究,这些研究隐含地依赖于恒定HRF的假设
在各个地区和个人之间。回应“特殊关注通知(NOSI)
考虑使用人类连接组[HCP]进行次级分析”,
提议使用寿命
5-100岁)与先进的统计建模t结合
我们
HCP数据(n = 〜3,600来自人的高质量数据集
o解决这个问题。目标
1,我们将根据可靠性对比整个生命周期中常用的HRF模型进行对比
以及“解码”任务状态和表型变量的能力(例如,认知功能和
情绪)。我们开发了提取有意义的表型信息的新颖方法
从HRF形状和人口推断,并为一流的一流的软件开发可靠的软件
型号。在AIM 2中,我们将一流的HRF模型集成到了一个新颖的高斯过程中
模型并使用它得出人口特定的时空HRF地图集,提供
根据易于测量的特征(年龄,性别和身体 -
质量指数)和大脑区域。在AIM 3中,我们使用HRF图集来解vonvolve RS-FMRI
数据并构建由HRF校正的Connectome Map。我们验证HRF模型,
Atlas和两个独立的HCP疾病连接组和CAM-上的Connectome
可以数据集(n = 〜700),并与
研究界。这些大样本模型的开发将提供
与任务相关的fMRI活动和连通性的更准确和精确的估计
心理健康,衰老,物质使用以及其他方面的基础和临床研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Martin Lindquist其他文献
Martin Lindquist的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Martin Lindquist', 18)}}的其他基金
Personalized spatiotemporal hemodynamic response models for functional magnetic resonance imaging
用于功能磁共振成像的个性化时空血流动力学响应模型
- 批准号:
10585582 - 财政年份:2022
- 资助金额:
$ 76.51万 - 项目类别:
Data Center for Acute to Chronic Pain Biosignatures
急性至慢性疼痛生物特征数据中心
- 批准号:
10468273 - 财政年份:2019
- 资助金额:
$ 76.51万 - 项目类别:
Data Center for Acute to Chronic Pain Biosignatures
急性至慢性疼痛生物特征数据中心
- 批准号:
10863408 - 财政年份:2019
- 资助金额:
$ 76.51万 - 项目类别:
Data Center for Acute to Chronic Pain Biosignatures
急性至慢性疼痛生物特征数据中心
- 批准号:
9812376 - 财政年份:2019
- 资助金额:
$ 76.51万 - 项目类别:
Data Center for Acute to Chronic Pain Biosignatures
急性至慢性疼痛生物特征数据中心
- 批准号:
10789239 - 财政年份:2019
- 资助金额:
$ 76.51万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Climate Change Effects on Pregnancy via a Traditional Food
气候变化通过传统食物对怀孕的影响
- 批准号:
10822202 - 财政年份:2024
- 资助金额:
$ 76.51万 - 项目类别:
Differences in Hospital Nursing Resources among Black-Serving Hospitals as a Driver of Patient Outcomes Disparities
黑人服务医院之间医院护理资源的差异是患者结果差异的驱动因素
- 批准号:
10633905 - 财政年份:2023
- 资助金额:
$ 76.51万 - 项目类别:
Competitive Bidding in Medicare and the Implications for Home Oxygen Therapy in COPD
医疗保险竞争性招标以及对慢性阻塞性肺病家庭氧疗的影响
- 批准号:
10641360 - 财政年份:2023
- 资助金额:
$ 76.51万 - 项目类别:
Alzheimer's Disease and Related Dementia-like Sequelae of SARS-CoV-2 Infection: Virus-Host Interactome, Neuropathobiology, and Drug Repurposing
阿尔茨海默病和 SARS-CoV-2 感染的相关痴呆样后遗症:病毒-宿主相互作用组、神经病理生物学和药物再利用
- 批准号:
10661931 - 财政年份:2023
- 资助金额:
$ 76.51万 - 项目类别:
NeuroMAP Phase II - Recruitment and Assessment Core
NeuroMAP 第二阶段 - 招募和评估核心
- 批准号:
10711136 - 财政年份:2023
- 资助金额:
$ 76.51万 - 项目类别: