Data Center for Acute to Chronic Pain Biosignatures
急性至慢性疼痛生物特征数据中心
基本信息
- 批准号:10468273
- 负责人:
- 金额:$ 253.48万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-01 至 2023-07-31
- 项目状态:已结题
- 来源:
- 关键词:AcuteAwarenessBehaviorBehavior assessmentBehavioralBiometryCellular PhoneClinicalClinical DataCloud ComputingCodeCollaborationsCommunicationCommunitiesComputer softwareCountryCustomDataData AnalysesData ScienceData ScientistData SetData Storage and RetrievalDatabasesDevelopmentEducationEducational workshopElectronic Health RecordEnrollmentEnvironmentEpidemicFacultyFundingGenomicsHigh Performance ComputingImageInformaticsInfrastructureInstitutionInternetIntranetLeadMachine LearningMeasuresMetadataMethodsModelingPainPatientsPeripheralPersonsPhysiologyProcessProductivityProteomicsProtocols documentationPythonsQuality ControlRecording of previous eventsResearch PersonnelResourcesRestRunningScienceScientistSensorySideSoftware EngineeringStandardizationStructureSystemTestingTexasTrainingTraining ProgramsUnited States National Institutes of HealthUniversitiesUpdateVisualizationWagesWearable ComputerWorkanalysis pipelinebasebiosignaturechronic painclinical paincloud basedcluster computingcyber infrastructuredata accessdata centersdata fusiondata integrationdata pipelinedata portaldata qualitydata resourcedata submissiondata toolsdeep learningdesigndiverse dataelectronic bookexperiencehealth datamassive open online coursesmeetingsmembermetaportalmultimodal dataneuroimagingonline courseopioid useoutreachoutreach programpain chronificationpredictive modelingprogramsprospectiveresponseskillssocial mediastatisticstooluser-friendly
项目摘要
Understanding the mechanisms underlying the transition to chronic pain is a key to
mitigating the dual epidemics of chronic pain and opioid use in the U.S. In response to
RFA-RM-18-031, and as part of the NIH Common Fund Acute to Chronic Pain
Signatures (A2CPS) Program, we will establish a Data Integration and Resource Center
(DIRC) to integrate imaging, physiology, -omics, behavioral, and clinical data to develop
biosignatures for the transition to chronic pain. The Center will be based in the
Department of Biostatistics at JHU, a nexus for a wide range of collaborators with
expertise in (1) advanced data science and machine learning, (2) neuroimaging, (3)
genomics and related -omics, (4) wearable computing and smartphone-based behavioral
assessment, (5) systems-level predictive biosignatures, (6) software engineering and
high-performance computing, and (7) world-renowned pain researchers from JHU and
other institutions. JHU Biostatistics is the top-ranked department of its kind in the
country, and its unique blend of faculty provides the ability to be nimble and
accommodate analysis of diverse data types as needed, and a unique capacity for
scientific outreach through online courses and other forums. To deliver computing
infrastructure and cloud-based computing for A2CPS, we partner with the Texas
Advanced Computing Center (TACC), who have a long track record of large-scale
collaborations and have already built many of the cloud computing tools we see as ideal
for this project. The Center will consist of three components and an Administrative Core.
The Administrative Core will lead the Center and facilitate interaction among the
components of the Center and across the A2CPS consortium. The Data Coordination
Component (DCC) will provide the infrastructure for storage and processing, analysis
pipelines, cloud computing, and portals for data upload/query/export, in addition to other
technical deliverables. The Data Integration and Analysis Component (DIAC) will
provide data type-specific content for pipelines and analyses of data collected by the
A2CPS consortium. The Scientific Outreach Component (SOC) will use DCC-
developed portal infrastructure to maintain the consortium intranet and perform outreach
via the public A2CPS portal. It will also organize a variety of in-person and online training
and outreach programs, including the creation of free, online courses disseminating
information about chronic pain and A2CPS tools, data, and models.
了解向慢性疼痛转变的机制是关键
缓解美国慢性疼痛和阿片类药物使用的双重流行
RFA-RM-18-031,并作为 NIH 急性至慢性疼痛共同基金的一部分
签名(A2CPS)计划,我们将建立数据集成和资源中心
(DIRC) 整合成像、生理学、组学、行为和临床数据来开发
向慢性疼痛过渡的生物特征。该中心将设在
约翰霍普金斯大学生物统计系是众多合作者的纽带
(1) 高级数据科学和机器学习、(2) 神经影像学、(3) 方面的专业知识
基因组学和相关组学,(4) 可穿戴计算和基于智能手机的行为
评估,(5) 系统级预测生物特征,(6) 软件工程和
高性能计算,以及 (7) 来自 JHU 的世界知名疼痛研究人员
其他机构。 JHU 生物统计学在同类院系中排名第一
国家,其独特的师资组合提供了灵活和
根据需要容纳不同数据类型的分析,以及独特的能力
通过在线课程和其他论坛进行科学宣传。提供计算
A2CPS 的基础设施和基于云的计算,我们与德克萨斯州合作
高级计算中心 (TACC),在大规模计算方面拥有长期记录
合作并已经构建了许多我们认为理想的云计算工具
对于这个项目。该中心将由三个部分和一个行政核心组成。
行政核心将领导该中心并促进各中心之间的互动
该中心和整个 A2CPS 联盟的组成部分。数据协调
组件(DCC)将提供存储和处理、分析的基础设施
用于数据上传/查询/导出的管道、云计算和门户,以及其他
技术交付成果。数据集成和分析组件(DIAC)将
为管道和分析所收集的数据提供特定于数据类型的内容
A2CPS 联盟。科学外展组件 (SOC) 将使用 DCC-
开发门户基础设施来维护联盟内联网并进行外展
通过公共 A2CPS 门户。它还将组织各种现场和在线培训
和外展计划,包括创建免费的在线课程来传播
有关慢性疼痛和 A2CPS 工具、数据和模型的信息。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Martin Lindquist其他文献
Martin Lindquist的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Martin Lindquist', 18)}}的其他基金
Personalized spatiotemporal hemodynamic response models for functional magnetic resonance imaging
用于功能磁共振成像的个性化时空血流动力学响应模型
- 批准号:
10705163 - 财政年份:2022
- 资助金额:
$ 253.48万 - 项目类别:
Personalized spatiotemporal hemodynamic response models for functional magnetic resonance imaging
用于功能磁共振成像的个性化时空血流动力学响应模型
- 批准号:
10585582 - 财政年份:2022
- 资助金额:
$ 253.48万 - 项目类别:
Data Center for Acute to Chronic Pain Biosignatures
急性至慢性疼痛生物特征数据中心
- 批准号:
10863408 - 财政年份:2019
- 资助金额:
$ 253.48万 - 项目类别:
Data Center for Acute to Chronic Pain Biosignatures
急性至慢性疼痛生物特征数据中心
- 批准号:
9812376 - 财政年份:2019
- 资助金额:
$ 253.48万 - 项目类别:
Data Center for Acute to Chronic Pain Biosignatures
急性至慢性疼痛生物特征数据中心
- 批准号:
10789239 - 财政年份:2019
- 资助金额:
$ 253.48万 - 项目类别:
相似国自然基金
DMH区Orexin能冷敏感神经元整合调控意识与行为的神经环路机制研究
- 批准号:32371203
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
情境意识驱动的跨平台知识交流行为及其价值共创研究
- 批准号:72374159
- 批准年份:2023
- 资助金额:41 万元
- 项目类别:面上项目
内侧前额叶皮层在意识性主动排尿行为中的作用及机制研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
人肉搜索背景下网络用户泄露他人隐私内外部动机演化及羊群效应的放大作用研究
- 批准号:71901172
- 批准年份:2019
- 资助金额:19.0 万元
- 项目类别:青年科学基金项目
“瑕瑜互见,长短并存”:建言习惯的双刃剑效应机制及边界条件研究
- 批准号:71902084
- 批准年份:2019
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
相似海外基金
An Integrated Model of Contextual Safety, Social Safety, and Social Vigilance as Psychosocial Contributors to Cardiovascular Disease
情境安全、社会安全和社会警惕作为心血管疾病社会心理因素的综合模型
- 批准号:
10749134 - 财政年份:2024
- 资助金额:
$ 253.48万 - 项目类别:
Dynamic multimodal parent emotion socialization processes as risk processes for school-aged girls’ internalizing problems
动态多模式父母情绪社会化过程作为学龄女孩的风险过程——内化问题
- 批准号:
10607097 - 财政年份:2023
- 资助金额:
$ 253.48万 - 项目类别:
Screen Smart: Using Digital Health to Improve HIV Screening and Prevention for Adolescents in the Emergency Department
智能屏幕:利用数字健康改善急诊科青少年的艾滋病毒筛查和预防
- 批准号:
10711679 - 财政年份:2023
- 资助金额:
$ 253.48万 - 项目类别:
A Translational Research Approach to Healthy Technology Usage in Language-Minority Families with Young Children
有幼儿的语言少数群体家庭健康技术使用的转化研究方法
- 批准号:
10822222 - 财政年份:2023
- 资助金额:
$ 253.48万 - 项目类别:
The effect of medical school, residency program, and health system board diversities on racial and ethnic disparities in AD/ADRD care.
医学院、住院医师计划和卫生系统董事会多元化对 AD/ADRD 护理中种族和民族差异的影响。
- 批准号:
10727757 - 财政年份:2023
- 资助金额:
$ 253.48万 - 项目类别: