Equipment Supplement to R35GM146987: Purchase of LC-MS system for high throughput isolation of bioactive natural products
R35GM146987 的设备补充:购买 LC-MS 系统,用于高通量分离生物活性天然产物
基本信息
- 批准号:10798569
- 负责人:
- 金额:$ 24.19万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-01 至 2027-08-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAnabolismAwardBackBacteriaBiological AssayChemical StructureChromatographyCollectionComplexComplex MixturesCore FacilityDevelopmentEngineeringEnzymesEquipmentFeesFractionationGene ClusterGenesHourHuman ResourcesIndividualLinkLiquid ChromatographyMachine LearningMethodsModelingNatural ProductsParentsPathway interactionsPlantsProcessResearchSourceStructureStructure-Activity RelationshipSystemTechnologyTherapeuticanalogbioactive natural productscomputerized toolscostdesigndetectorexperimental studyfascinatefungusgenetic approachinsightinstrumentmachine learning methodmachine learning modelmass spectrometernatural product inspirednovelparent project
项目摘要
Project Summary/Abstract
Natural products from bacteria, fungi, and plants have long been a rich source of molecules with fascinating
chemical structures and therapeutically-relevant bioactivities. However, due to their complex structures, it is
difficult to screen many analogs of natural products to truly understand the rules governing the relationship
between their structure and activity. In the parent award, we are addressing this challenge by developing
machine learning methods that can functionally model the structure-activity relationships (SAR) of natural
products and aid in the design of biosynthetic pathways that can synthesize natural product analogs.
The first project of the parent award applies machine learning to study natural product SARs. One approach we
take is a genetic approach, where we are validating a machine learning model we previously developed that
predicts bioactivity based on the presence or absence of biosynthetic genes in a natural product’s biosynthetic
gene cluster (BGC). One major challenge of this approach is that extractions of bacterial cultures yield a complex
mixture of metabolites and it is difficult to link individual metabolites to their BGCs or observed activity. Currently,
we are using standard bioactivity-guided fractionation to link natural products to observed activity. This is a low-
throughput and laborious process. There are technologies that can make this process faster, which generally
involve performing chromatography and collecting fractions and mass spectra in parallel, so that specific mass
features can be associated with each fraction. Then activity observed in bioactivity assays can be correlated with
specific mass features to identify which molecules are responsible for activity. This process is much higher
throughput than our current approach but it requires an LC-MS with fraction collection, and we do not have
access to an up-to-date instrument for performing this assay. This equipment supplement will allow us to
purchase the required instrument and maximize the chances that this project will be successful.
The second project of the parent award focuses on developing machine learning and other computational tools
for designing BGCs to biosynthesize novel natural product-like molecules. In this project, we will use LC-MS to
determine if our engineered biosynthetic enzymes produced the expected product. While we do have access to
core facility instruments that are appropriate for this purpose, using them is associated with an hourly fee. We
could also use the instrument we will purchase with this supplement to perform these experiments, which would
save on core facility costs allowing for more of the parent award to go to personnel and supplies.
项目概要/摘要
来自细菌、真菌和植物的天然产物长期以来一直是具有令人着迷的分子的丰富来源
然而,由于其复杂的结构,它是化学结构和治疗相关的生物活性。
很难筛选许多天然产品的类似物以真正理解控制关系的规则
在家长奖中,我们通过开发来应对这一挑战。
机器学习方法可以对自然的结构-活动关系(SAR)进行功能建模
产品并有助于设计可以合成天然产物类似物的生物合成途径。
家长奖的第一个项目应用机器学习来研究天然产品的 SAR。
采用的是一种遗传方法,我们正在验证我们之前开发的机器学习模型
根据天然产物生物合成中是否存在生物合成基因来预测生物活性
这种方法的一个主要挑战是细菌培养物的提取会产生复杂的基因簇。
目前,很难将单个代谢物与其 BGC 或观察到的活性联系起来。
我们正在使用标准的生物活性引导分馏将天然产物与观察到的活性联系起来。
有一些技术可以使这个过程更快,通常是这样。
涉及并行执行色谱法并收集馏分和质谱,以便比质量
特征可以与每个部分相关联,然后可以将生物活性测定中观察到的活性与相关联。
特定的质量特征来识别哪些分子负责活性,这个过程要高得多。
通量比我们当前的方法高,但它需要具有馏分收集功能的 LC-MS,而我们没有
获得执行此检测的最新仪器将允许我们进行此设备补充。
购买所需的仪器并最大限度地提高该项目成功的机会。
家长奖的第二个项目专注于开发机器学习和其他计算工具
用于设计 BGC 来生物合成新型天然产物类分子 在该项目中,我们将使用 LC-MS 来进行生物合成。
确定我们的工程生物合成酶是否产生了预期的产品,而我们确实可以获得。
适用于此目的的核心设施工具,使用它们需要按小时付费。
也可以使用我们随本补充品购买的仪器来进行这些实验,这将
节省核心设施成本,从而使更多的家长奖励用于人员和用品。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Diversity and taxonomic distribution of bacterial biosynthetic gene clusters predicted to produce compounds with therapeutically relevant bioactivities.
细菌生物合成基因簇的多样性和分类学分布预计会产生具有治疗相关生物活性的化合物。
- DOI:
- 发表时间:2023-02-17
- 期刊:
- 影响因子:3.4
- 作者:Beck, Max L;Song, Siyeon;Shuster, Isra E;Miharia, Aarzu;Walker, Allison S
- 通讯作者:Walker, Allison S
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Allison Sara Walker其他文献
Allison Sara Walker的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Allison Sara Walker', 18)}}的其他基金
Machine learning approaches for the discovery, repurposing, and optimization of natural products with therapeutic potential
用于发现、重新利用和优化具有治疗潜力的天然产物的机器学习方法
- 批准号:
10693375 - 财政年份:2022
- 资助金额:
$ 24.19万 - 项目类别:
Bioinformatics and Chemical Biology Approaches for Identifying Bioactive Natural Products of Symbiotic Actinobacteria
鉴定共生放线菌生物活性天然产物的生物信息学和化学生物学方法
- 批准号:
9540546 - 财政年份:2018
- 资助金额:
$ 24.19万 - 项目类别:
相似国自然基金
苯丙氨酰tRNA合成酶α(FARSA)调控脂肪细胞脂质代谢的机制研究
- 批准号:82300954
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
多组学研究STAT3调控CKMT2和CD36-FABP4影响脂肪细胞参与乳腺癌细胞磷酸肌酸合成的耐药代谢重编程
- 批准号:82360604
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
微生物固定二氧化碳合成琥珀酸的代谢流调控及其机制解析
- 批准号:22378166
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
醛固酮瘤丙酸代谢异常通过MMA-肥大细胞-5-羟色胺-PCCA环路促进醛固酮合成的机制研究
- 批准号:82300887
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于T细胞代谢重编程研究二十五味儿茶丸通过促进亚精胺合成纠正Treg/Th17失衡治疗类风湿关节炎的作用机制
- 批准号:82360862
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
相似海外基金
BLRD Research Career Scientist Award Application
BLRD 研究职业科学家奖申请
- 批准号:
10703523 - 财政年份:2023
- 资助金额:
$ 24.19万 - 项目类别:
BLRD Research Career Scientist Award Application
BLRD 研究职业科学家奖申请
- 批准号:
10703523 - 财政年份:2023
- 资助金额:
$ 24.19万 - 项目类别:
Mechanisms for the regulation of novel lipids in vivo
体内新型脂质的调节机制
- 批准号:
10186875 - 财政年份:2021
- 资助金额:
$ 24.19万 - 项目类别:
BCCMA: Foundational Research to Act Upon and Resist Conditions Unfavorable to Bone (FRACTURE CURB): Combined long-acting PTH and calcimimetics actions on skeletal anabolism
BCCMA:针对和抵抗不利于骨骼的条件的基础研究(遏制骨折):长效 PTH 和拟钙剂联合作用对骨骼合成代谢的作用
- 批准号:
10365254 - 财政年份:2021
- 资助金额:
$ 24.19万 - 项目类别:
2020 International Meeting on the Molecular Biology of Hepatitis B Viruses
2020年乙型肝炎病毒分子生物学国际会议
- 批准号:
9992951 - 财政年份:2021
- 资助金额:
$ 24.19万 - 项目类别: