A New Informatics Approach for Detection of Cerebrovascular Abnormalities
检测脑血管异常的新信息学方法
基本信息
- 批准号:10682493
- 负责人:
- 金额:$ 38.04万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-15 至 2026-05-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAddressAdoptionAffectAlgorithmsAngiographyArteriesBackBlood VesselsBrainBrain AneurysmsBrain DiseasesBrain hemorrhageBrain imagingBrain scanCause of DeathCenters for Disease Control and Prevention (U.S.)Cerebral AngiographyCerebrovascular DisordersCerebrovascular systemCessation of lifeClassificationClinicClinicalClinical InformaticsCoagulation ProcessColorComplexComputational TechniqueComputational algorithmComputer AssistedComputersConsumptionDetectionDiagnosisDiagnosticDiseaseFatigueFistulaGoalsHealthHemorrhageHumanImageIndividualInformaticsInterobserver VariabilityIntracranial AneurysmKnowledgeLocationManualsMeasurementMeasuresMethodsModelingMorbidity - disease rateNervous System TraumaNeurosurgeonOperative Surgical ProceduresOutcomeParalysedPatientsPersonsPopulationPositioning AttributePrevalencePreventive treatmentProcessReaderResearchRotationRuptured AneurysmScanningSchemeSensitivity and SpecificityShapesSource CodeSpeechStenosisStrokeSurfaceSymptomsTechniquesTimeTrainingUnited StatesValidationVasculitisVasospasmVisualizationWorkX-Ray Computed Tomographyaccurate diagnosiscerebrovascularclinical diagnosisclinical imagingcomputer aided detectioncomputerizeddeep learningdeep learning modeldesigndisease diagnosisimage processingimaging Segmentationimaging modalityimprovedmalformationmortalityneurosurgerynovelopen sourceoperationshape analysisstatisticstool
项目摘要
The goal of this clinical informatics project is to develop computational techniques to model and analyze brain
blood vessels for detecting morphometric abnormalities that are hallmarks of cerebrovascular diseases (CVDs).
The project addresses an important challenge in neuroradiology and neurosurgery: how to accurately diagnose
CVDs on computed tomography angiography (CTA). CVDs include intracranial aneurysms, stroke, intracranial
vascular stenosis, dural fistula, and other disorders of the brain vasculature, and these diseases have severe
outcomes as they cause hemorrhage, stroke, neurological damage, and death. In fact, each year, CVDs cause
more than 100,000 deaths in the US, and an even larger population suffers permanent damage, including
stroke, paralysis, and loss of speech. If we can diagnose CVDs more accurately and promptly, mortality and
morbidity can be significantly reduced.
Brain imaging is a first line diagnostic for CVDs with the image hallmarks being brain blood vessel
abnormalities. Yet diagnosis is very challenging because a clinician needs to sift through and zoom in and out
of and rotate a large number of images to examine each blood vessel for malformation, whether it is a
narrowing or the formation of intracranial aneurysms on blood vessel walls. Similarly, a neurosurgeon needs to
read brain scans right before an operation to locate the positions of abnormalities.
Our specific aims of this project are to develop novel computational techniques including deep learning to
model and analyze blood vessels to detect abnormalities and highlight their locations for clinicians to examine
further. While computers are not yet sophisticated enough to make diagnoses like a trained clinician,
computers can perform more objectively and quickly, compared to human experts, the necessary complex
shape analysis and quantification, such as identifying abnormal widening or narrowing of blood vessels and
detecting protrusions on blood vessel walls. To address the request from clinicians that they would benefit
significantly from computer-aided detection of abnormalities and, once abnormalities are marked, they can
make highly accurate diagnosis and classification of the underlying CVDs, we designed an informatics
approach as a computer-aided tool to analyze CTA images. We will model both individual blood vessels and
the whole vasculature in the 3D space. Then, from the vasculature, we will develop and implement a multi-
channel deep learning model focused on shape analysis to detect blood vessel abnormalities. Finally,
abnormalities will be marked in colors in 3D to allow clinicians to make more accurate diagnoses, plan
preventative treatments, and perform precise surgeries to benefit patient health.
该临床信息学项目的目标是开发计算技术来建模和分析大脑
用于检测作为脑血管疾病(CVD)标志的形态异常的血管。
该项目解决了神经放射学和神经外科领域的一个重要挑战:如何准确诊断
计算机断层扫描血管造影 (CTA) 上的 CVD。 CVD包括颅内动脉瘤、中风、颅内动脉瘤
血管狭窄、硬脑膜瘘和其他脑血管疾病,这些疾病具有严重的
后果,因为它们会导致出血、中风、神经损伤和死亡。事实上,每年,CVD 都会导致
美国有超过 10 万人死亡,更多人口遭受永久性损害,包括
中风、瘫痪和失语。如果我们能够更准确、更及时地诊断 CVD,死亡率和
发病率可显着降低。
脑成像是 CVD 的一线诊断,其图像特征是脑血管
异常。然而诊断非常具有挑战性,因为临床医生需要筛选、放大和缩小
并旋转大量图像来检查每条血管是否畸形,是否是
血管壁变窄或形成颅内动脉瘤。同样,神经外科医生需要
在手术前读取脑部扫描图以定位异常的位置。
我们该项目的具体目标是开发新颖的计算技术,包括深度学习
建模和分析血管以检测异常并突出显示其位置以供临床医生检查
更远。虽然计算机还不够先进,无法像训练有素的临床医生那样进行诊断,
与人类专家相比,计算机可以更客观、更快速地执行所需的复杂操作
形状分析和量化,例如识别血管的异常扩张或狭窄
检测血管壁上的突出物。满足临床医生的要求,让他们受益
计算机辅助异常检测的显着效果,一旦异常被标记,他们就可以
为了对潜在的 CVD 进行高度准确的诊断和分类,我们设计了一个信息学模型
方法作为分析 CTA 图像的计算机辅助工具。我们将对个体血管进行建模
3D 空间中的整个脉管系统。然后,从脉管系统出发,我们将开发并实施多
通道深度学习模型专注于形状分析以检测血管异常。最后,
异常情况将以 3D 颜色标记,以便临床医生做出更准确的诊断、计划
预防性治疗,并进行精准手术,以造福患者健康。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Geoffrey Young其他文献
Geoffrey Young的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Geoffrey Young', 18)}}的其他基金
Computer aided diagnosis of cancer metastases in the brain
计算机辅助诊断脑部癌症转移
- 批准号:
10163013 - 财政年份:2016
- 资助金额:
$ 38.04万 - 项目类别:
相似国自然基金
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Next Generation Robotic System for Supervised-Autonomous Bowel Anastomosis
用于监督自主肠吻合术的下一代机器人系统
- 批准号:
10910494 - 财政年份:2023
- 资助金额:
$ 38.04万 - 项目类别:
Blood Biomarker Development and Validation in Chronic Traumatic Encephalopathy and Alzheimer's Disease and Alzheimer's Disease Related Dementias
慢性创伤性脑病、阿尔茨海默病和阿尔茨海默病相关痴呆的血液生物标记物开发和验证
- 批准号:
10662752 - 财政年份:2023
- 资助金额:
$ 38.04万 - 项目类别:
Optimization of electromechanical monitoring of engineered heart tissues
工程心脏组织机电监测的优化
- 批准号:
10673513 - 财政年份:2023
- 资助金额:
$ 38.04万 - 项目类别:
Bioethical, Legal, and Anthropological Study of Technologies (BLAST)
技术的生物伦理、法律和人类学研究 (BLAST)
- 批准号:
10831226 - 财政年份:2023
- 资助金额:
$ 38.04万 - 项目类别:
A comprehensive platform for low-cost screening and image-guided photodynamic therapy (PDT) of pre-malignant and malignant oral lesions in low resource settings
一个综合平台,用于在资源匮乏的环境中对癌前和恶性口腔病变进行低成本筛查和图像引导光动力治疗 (PDT)
- 批准号:
10648426 - 财政年份:2023
- 资助金额:
$ 38.04万 - 项目类别: