Inhibitory feedback in the avian auditory brainstem
鸟类听觉脑干的抑制反馈
基本信息
- 批准号:10677324
- 负责人:
- 金额:$ 3.46万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-07-01 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:Acoustic NerveAction PotentialsAddressAdultAfferent NeuronsAgeAnatomyAuditoryAuditory systemBinauralBirdsBrainBrain StemCell NucleusCellsCochlear ImplantsCochlear nucleusCodeCollaborationsCommunicationConfocal MicroscopyContralateralCuesDataDendritesDistalElectrophysiology (science)ElectroporationFeedbackFoundationsFrequenciesFunctional disorderGoalsHearingHeterogeneityHyperactivityHyperacusisImmunohistochemistryIn VitroIndividualInhibitory SynapseIontophoresisIpsilateralMembraneMental DepressionMicroscopyNervous SystemNeural InhibitionNeuronsPathway interactionsPatternPharmacologyPhasePhenotypePhysiologicalPopulationPresbycusisPropertyQuality of lifeResearchRoleSensoryShapesSpeech SoundStimulusStructureSymptomsSynapsesSynaptic TransmissionTechniquesTinnitusTrainingauditory processingcareercell typeexperimental studygamma-Aminobutyric Acidhearing impairmenthuman old age (65+)inhibitory neuroninsightnerve supplyneural circuitpostsynapticreconstructionresponsesegregationsoundspeech processingstemsuccesssuperior olivary nucleustranslational therapeuticsvirtualvoltage
项目摘要
PROJECT SUMMARY
Auditory sensory processing requires neuronal communication via action potentials with precision in the order of
microseconds. The nervous system achieves this precision by specializing intrinsic membrane properties and synaptic
transmission, particularly neural inhibition. Neural inhibition sharpens sensory processing by increasing the selectivity of
neurons to particularly salient stimuli and issues with neural inhibition are thought to underlie sensory problems such as
tinnitus, hyperacusis, and age-related hearing loss (ARHL). In the avian auditory brainstem, inhibition stems virtually
entirely from the superior olivary nucleus (SON). Neurons in SON receive excitatory input from two distinct, parallel
circuits: the ipsilateral cochlear nucleus angularis (NA), which encodes intensity information from the auditory nerve,
and from the ipsilateral coincidence-detecting nucleus laminaris (NL), which encodes binaural timing information from
the cochlear nucleus magnocellularis (NM). Studies in vitro have demonstrated that there were 2 electrophysiological
phenotypes, a single-spiking and a tonic firing response, in SON, however, preliminary data has revealed a third
phenotype, a patterned tonic phenotypes. Increasing sound intensity increased phase-locking capabilities in a subset of
nucleus laminaris neurons, indicating that there is potentially convergence from NA and NL in SON, however it has not
been demonstrated. Importantly, Burger et al. (2005) demonstrated that SON neurons either project ipsilaterally to NA,
NL, and the cochlear nucleus magnocellularis, or to the contralateral SON. However, it is unclear if these phenotypes
underlie the divergent projections. Research has shown that inhibition increases the precision of timing neurons in NM
and NL, but the effect on intensity coding in NA, which contains many different cell types, is less clear. Inhibitory
terminals are heterogeneously expressed in NA, which some seemingly clustered on cell bodies and others on distal
dendrites. The electrophysiological diversity in NA has been shown to exist along a spectrum of operating modes. It is
unclear if the inhibitory terminals are related to the functional heterogeneity in NA, particularly in rate-coding neurons
that are encode the dynamic range of spectral information for intensity coding. The goal of this project is to determine
how neurons in SON fit into well characterized brainstem circuits and how they influence intensity coding neurons in the
following two Specific Aims. Aim 1 – to use in vitro electrophysiology, synaptic stimulation, and neuronal reconstruction
to determine how inputs are integrated in SON and the cell-type specific targets of divergent projections from SON
neurons. Aim 2- use in vitro electrophysiology, immunohistochemistry, expansion microscopy, and confocal microscopy
to determine how inhibitory terminals are expressed along specific NA neurons and how inhibition shapes intensity
coding in NA. My results will provide insight into how circuits can utilize specialized inhibitory neurons for sensory
processing, and how inhibition can shape spectrotemporal processing through its effect on intensity coding.
项目概要
听觉感觉处理需要通过动作电位进行神经通讯,精确度为
神经系统通过专门的内在膜特性和突触来实现这种精度。
传输,特别是神经抑制,通过增加选择性来增强感觉处理。
神经元对特别显着的刺激和神经抑制问题被认为是感觉障碍的基础,例如
耳鸣、听觉过敏和年龄相关性听力损失(ARHL)在鸟类听觉脑干中实际上是由抑制引起的。
SON 中的神经元完全来自上橄榄核 (SON),接收来自两个不同的并行信号的兴奋性输入。
电路:同侧耳蜗角核(NA),编码来自听神经的强度信息,
以及来自同侧重合检测核层状核 (NL),该核对双耳计时信息进行编码
体外研究表明,耳蜗大细胞核(NM)存在2个电生理学特征。
然而,初步数据揭示了 SON 中的第三种表型,即单峰放电反应和强直放电反应
表型,一种模式化的强直表型,增加声音强度会增加一部分的锁相能力。
层状核神经元,表明 SON 中的 NA 和 NL 可能会收敛,但尚未收敛
重要的是,Burger 等人 (2005) 证明 SON 神经元要么向 NA 同侧投射,
NL 和耳蜗大细胞核,或对侧 SON 然而,尚不清楚这些表型是否存在。
研究表明,抑制可以提高 NM 中神经元计时的精度。
和 NL,但对包含许多不同细胞类型的 NA 中强度编码的影响尚不清楚。
NA 末端的表达呈异质性,一些看似聚集在细胞体上,另一些则聚集在远端
NA 中的电生理多样性已被证明存在于一系列操作模式中。
尚不清楚抑制性末端是否与 NA 中的功能异质性相关,特别是在速率编码神经元中
对强度编码的光谱信息的动态范围进行编码 该项目的目标是确定。
SON 中的神经元如何融入特征明确的脑干回路,以及它们如何影响 SON 中的强度编码神经元
遵循两个具体目标 1 – 使用体外电生理学、突触刺激和神经重建。
确定如何将输入集成到 SON 中以及 SON 不同预测的细胞类型特定目标
目标 2- 使用体外电生理学、免疫组织化学、扩展显微镜和共聚焦显微镜。
确定抑制末端如何沿着特定 NA 神经元表达以及抑制如何塑造强度
我的结果将深入了解电路如何利用专门的抑制神经元进行感觉。
处理,以及抑制如何通过其对强度编码的影响来塑造光谱时间处理。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
James Baldassano其他文献
James Baldassano的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
神经系统中动作电位双稳传导研究
- 批准号:12375033
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
与痛觉相关的动作电位传导失败的动力学与调控机制
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
仿生味觉自适应柔性纳米电极阵列构建研究
- 批准号:61901469
- 批准年份:2019
- 资助金额:24.5 万元
- 项目类别:青年科学基金项目
晚钠电流通过CaMK-II调节跨壁胞内钙离子分布在心肌缺血再灌注心律失常中的作用及机制研究
- 批准号:81900300
- 批准年份:2019
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
神经元离子通道-动作电位-量子化分泌关系研究
- 批准号:31930061
- 批准年份:2019
- 资助金额:303 万元
- 项目类别:重点项目
相似海外基金
The electrode-neural interface in auditory brainstem implants
听觉脑干植入物中的电极神经接口
- 批准号:
10432541 - 财政年份:2022
- 资助金额:
$ 3.46万 - 项目类别:
The electrode-neural interface in auditory brainstem implants
听觉脑干植入物中的电极神经接口
- 批准号:
10605359 - 财政年份:2022
- 资助金额:
$ 3.46万 - 项目类别:
The Roles of Neuronal Activity in Peripheral Nerve Myelination
神经元活动在周围神经髓鞘形成中的作用
- 批准号:
10375469 - 财政年份:2020
- 资助金额:
$ 3.46万 - 项目类别:
The Roles of Neuronal Activity in Peripheral Nerve Myelination
神经元活动在周围神经髓鞘形成中的作用
- 批准号:
10604374 - 财政年份:2020
- 资助金额:
$ 3.46万 - 项目类别:
Neural Pathophysiology and Suprathreshold Processing in Older Adults with Elevated Thresholds
阈值升高的老年人的神经病理生理学和阈上处理
- 批准号:
10222647 - 财政年份:2017
- 资助金额:
$ 3.46万 - 项目类别: