Transcriptional basis of stereotyped neural architectures
刻板神经结构的转录基础
基本信息
- 批准号:10672300
- 负责人:
- 金额:$ 12.54万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-01 至 2023-09-28
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAnatomyAnimal ModelAnimalsArchitectureAreaAwardBehaviorBiologicalBrainBrain DiseasesCadherinsCaenorhabditis elegansCalciumCell Adhesion MoleculesCellsCodeCommunitiesComplexComputational TechniqueComputer ModelsDataData SetDefectEnsureGap JunctionsGene CombinationsGene ExpressionGene Expression ProfileGene Expression ProfilingGenesGeneticGenetic ProgrammingGenetic TranscriptionHeterogeneityHippocampusImageImage AnalysisIndividualInterneuronsLinear ModelsLocationMaintenanceMemoryMental DepressionMental disordersMentorsMentorshipMolecularMusNervous SystemNeurobiologyNeuronsNeuropeptidesNeurosciencesPatternPhasePlayPyramidal CellsReporter GenesResearchResearch PersonnelResolutionRodentRodent ModelRoleSchizophreniaSignal TransductionSpecific qualifier valueStereotypingSynapsesSystemTechniquesTestingTissue-Specific Gene ExpressionTrainingTransgenic OrganismsUniversitiesValidationVisualizationautism spectrum disordercombinatorialcomputational neurosciencecomputerized toolsconnectomedesigngenetic effectorin vivomonoaminemouse modelmulti-photonmutantneuralneural circuitneuroregulationnovelpostsynapticpresynapticpresynaptic neuronsprofessorprogramsreconstructionsingle-cell RNA sequencingskillstheoriestherapeutic targettooltranscriptometranscriptomicsvirtual environmentwireless
项目摘要
ABSTRACT
Recent advances in high-resolution volumetric imaging and single-cell RNA sequencing have enabled the
characterization of neuronal diversity and the genetic programs that specify identity. Meanwhile, our
understanding of the diversity of synapses and their genetic underpinnings remains limited. Decoding the genetic
programs responsible for the formation and maintenance of neural architectures can help us understand the
functional role of synapses in the brain and offer entry points towards designing genetic targets for the treatment
of mental health disorders related to brain connectivity.
Based on the evidence of conservation of neural architectures in a wide range of neural systems and strong
preliminary results in C. elegans, I hypothesize that synaptic connectivity is genetically encoded. Specifically, I
hypothesize that complimentary gene combinations specify pre-synaptic neurons and their post-synaptic neural
partners (resembling a "key-and-lock" combination). Single-cell RNA sequencing and single-cell resolution
connectivity datasets make this hypothesis testable. I will test this hypothesis in two parallel aims using the
computational Network Differential Gene Expression (nDGE) tool I have pioneered. This technique integrates
single-cell resolution gene expression data with single-cell resolution connectivity to assign statistical
significance to combinatorial genetic patterns enriched in synaptically connected neurons. Across two aims, I
will investigate the transcriptional encoding of the structural and functional connectome of C. elegans (Aim 1)
and the micro-connectivity of pyramidal cells and interneurons in the CA1 region of the rodent hippocampus (Aim
2). To accomplish these aims, I will build additional computational tools to extract a functional connectome in C.
elegans (Aim 1b) and harmonize spatial transcriptomic data with functional calcium imaging data in the rodent
hippocampus (Aim 2a). Together, these aims will provide two substantial entry points towards elucidating the
genetic programming of neural architectures across multiple animal nervous systems. Additionally, these aims
will generate valuable computational tools for the benefit of the molecular and systems neuroscience community
as a whole. The multiple animal approach will ensure the robustness and biological validity of the computational
models and tools that I will introduce to the neuroscience community.
During the K99 phase of this award, occurring within Columbia's vibrant neuroscience community, I will be
mentored by Dr. Liam Paninski, Dr. Oliver Hobert, and Dr. Attila Losonczy while consulting with Dr. Larry Abbott,
and Dr. Ashok Litwin-Kumar. These professors represent diverse expertise in computational, molecular, and
systems-level neuroscience in C. elegans and rodent models. They will guide me to hone my computational
skills further and provide needed training in molecular and circuit neurobiology during my transition to becoming
an independent computational investigator at the interface of molecular and systems neuroscience.
抽象的
高分辨率体积成像和单细胞 RNA 测序的最新进展使得
神经元多样性的表征和指定身份的遗传程序。同时,我们的
对突触多样性及其遗传基础的了解仍然有限。解码基因
负责神经结构形成和维护的程序可以帮助我们理解
突触在大脑中的功能作用,并为设计治疗的遗传目标提供切入点
与大脑连接相关的心理健康障碍。
基于广泛神经系统中神经结构守恒的证据和强大的
根据秀丽隐杆线虫的初步结果,我假设突触连接是基因编码的。具体来说,我
假设互补基因组合指定突触前神经元及其突触后神经元
合作伙伴(类似于“钥匙和锁”的组合)。单细胞 RNA 测序和单细胞分辨率
连接性数据集使这一假设变得可检验。我将使用以下两个并行目标来测试这个假设
我首创的计算网络差异基因表达(nDGE)工具。该技术集成了
单细胞分辨率基因表达数据与单细胞分辨率连接性以分配统计
对突触连接神经元中丰富的组合遗传模式具有重要意义。跨越两个目标,我
将研究秀丽隐杆线虫结构和功能连接组的转录编码(目标 1)
以及啮齿动物海马 CA1 区锥体细胞和中间神经元的微连接(Aim
2)。为了实现这些目标,我将构建额外的计算工具来提取 C 中的功能连接组。
线虫(目标 1b)并将空间转录组数据与啮齿动物的功能钙成像数据相协调
海马体(目标 2a)。总之,这些目标将为阐明
跨多个动物神经系统的神经结构的遗传编程。此外,这些目标
将为分子和系统神经科学界带来有价值的计算工具
作为一个整体。多动物方法将确保计算的稳健性和生物学有效性
我将向神经科学界介绍的模型和工具。
在该奖项的 K99 阶段,在哥伦比亚充满活力的神经科学界进行,我将
由 Liam Paninski 博士、Oliver Hobert 博士和 Attila Losonczy 博士指导,同时咨询 Larry Abbott 博士,
和 Ashok Litwin-Kumar 博士。这些教授代表了计算、分子和生物领域的不同专业知识。
线虫和啮齿动物模型的系统级神经科学。他们将指导我磨练我的计算能力
进一步提高技能,并在我过渡到成为一名医生的过程中提供分子和回路神经生物学所需的培训
分子和系统神经科学领域的独立计算研究员。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Erdem Varol其他文献
Erdem Varol的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Erdem Varol', 18)}}的其他基金
Transcriptional basis of stereotyped neural architectures
刻板神经结构的转录基础
- 批准号:
10525865 - 财政年份:2022
- 资助金额:
$ 12.54万 - 项目类别:
相似国自然基金
儿童脊柱区腧穴针刺安全性的发育解剖学及三维数字化研究
- 批准号:82360892
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
寰枢椎脱位后路钉棒内固定系统复位能力优化的相关解剖学及生物力学研究
- 批准号:82272582
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
基于次生乳管网络结构发育比较解剖学和转录组学的橡胶树产胶机制研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
基于垂体腺瘤海绵窦侵袭模式的相关膜性解剖学及影像学研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
亚热带典型阔叶树种径向生长的解剖学特征及其碳分配调控机制
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Novel Implementation of Microporous Annealed Particle HydroGel for Next-generation Posterior Pharyngeal Wall Augmentation
用于下一代咽后壁增强的微孔退火颗粒水凝胶的新实现
- 批准号:
10727361 - 财政年份:2023
- 资助金额:
$ 12.54万 - 项目类别:
Development of Cell Culture Inserts and 3D In Vitro Tissue Models Utilizing Novel Electrospun Scaffolds
利用新型静电纺丝支架开发细胞培养插入物和 3D 体外组织模型
- 批准号:
10697932 - 财政年份:2023
- 资助金额:
$ 12.54万 - 项目类别:
Development of Cell Culture Inserts and 3D In Vitro Tissue Models Utilizing Novel Electrospun Scaffolds
利用新型静电纺丝支架开发细胞培养插入物和 3D 体外组织模型
- 批准号:
10697932 - 财政年份:2023
- 资助金额:
$ 12.54万 - 项目类别:
Elucidating the role of pericytes in angiogenesis in the brain using a tissue-engineered microvessel model
使用组织工程微血管模型阐明周细胞在大脑血管生成中的作用
- 批准号:
10648177 - 财政年份:2023
- 资助金额:
$ 12.54万 - 项目类别: