Investigating how bHLH circuits integrate signals for cell fate decisions
研究 bHLH 电路如何整合信号以决定细胞命运
基本信息
- 批准号:10722452
- 负责人:
- 金额:$ 12.47万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-07-01 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:AddressAdultAffectAffinityAnimalsAstrocytesAuxinsBHLH ProteinBehaviorBioinformaticsCellsCollaborationsComplementComplexConsultationsCuesDecision MakingDevelopmentDimerizationDiseaseElementsEmbryoEnabling FactorsEndowmentEnvironmentFibroblast Growth FactorGenerationsGenesGenetic TranscriptionGoalsHelix-Turn-Helix MotifsHuman DevelopmentImageIn VitroIndividualInvestigationKnowledgeLIF geneLinkMalignant NeoplasmsMeasurementMeasuresMediatingMentorsMentorshipMicroscopyMonitorMultipotent Stem CellsMusNeuronsOligodendrogliaOutcomePathologicPhasePhysiologicalPlayPostdoctoral FellowProcessProtein AnalysisProteinsRNAReagentRegulator GenesReporterRoleSignal PathwaySignal TransductionSpinal CordSystemTechniquesTestingTherapeuticTissue EngineeringTissuesWNT Signaling PathwayWorkYeastsZebrafishcell typedesigndevelopmental diseasedimerexperimental studyextracellularfluorescence imagingimprovedin vivoinsightknockout genemutantnerve stem cellneuralneural plateneurodevelopmentnovelprogramsrepairedresponsesignal processingstem cellssynthetic biology
项目摘要
Project Summary
Multipotent stem cells in animals integrate information from various extracellular signals to choose between fates.
Signal integration enables robust, context-specific decisions, while errors in this process underlie developmental
disorders and cancers. To be effective, signal integration must be tightly linked to coordination between fates,
i.e., the activation of a target fate program and inactivation of alternative fates. How is this achieved?
My recent postdoctoral work suggested that, in cultured neural stem cells (NSCs), a gene regulatory
circuit of basic helix-loop-helix (bHLH) transcription factors enables the integration of two signals to
simultaneously activate astrocyte differentiation and suppress alternative fates. Transcriptional interactions
among bHLHs are an important component of this circuit, but they alone could not account for signal integration.
I hypothesize that two other key features of bHLHs play an essential role: protein-level dimerization and
oscillatory dynamics of bHLHs. Here, I will investigate how these features contribute to signal integration by the
NSC circuit using quantitative measurements of dimerization and dynamics complemented by precise
perturbations. Moreover, I will analyze the role of a bHLH circuit in the developing zebrafish spinal cord to
understand how principles of circuit function obtained using in vitro systems extend to an in vivo context.
In Aim 1, I will investigate the role of bHLH dimerization by designing novel dimerization mutants based
on computational sequence co-evolution analysis (in collaboration with Dr. Debora Marks), validating them using
a quantitative yeast-based measurement platform that I have developed, and analyzing their impact on signal
integration in NSCs. In Aim 2, I will use a combination of timelapse imaging and multiplexed RNA-FISH in NSCs
to analyze how oscillatory dynamics in the bHLH Hes1 is controlled by upstream signals and subsequently
impacts other bHLHs in the circuit as well as downstream fate outcomes. I will also assess how ectopically
modulating Hes1 dynamics affects circuit behavior. In Aim 3, I will determine whether and how a bHLH circuit in
stem cells of the zebrafish neural plate integrates two developmental signals to enable an early fate choice in
this tissue. Specifically, I will first characterize how signaling activity in individual cells impacts their fate using a
combination of in vivo timelapse microscopy and targeted signaling perturbations. I will then investigate how
interactions in the bHLH circuit mediate the effects of signals on fate choice.
bHLH factors are expressed in most stem cells during development and in adult tissues. bHLH circuits
could therefore play a ubiquitous role in integrating signaling information to enable cell fate decisions. This work
seeks to broadly understand how they function, leveraging quantitative approaches both in vitro and in vivo with
guidance from my mentors Dr. Galit Lahav and Dr. Sean Megason. This investigation will clarify the basis of fate
choice in diverse tissues and provide opportunities to ‘re-wire’ this process to improve the generation of desired
cell types for tissue engineering or to treat pathological fate choices in disease contexts.
项目摘要
动物中的多能干细胞整合了来自各种细胞外信号的信息,以在命运之间进行选择。
信号集成可以实现强大的,上下文特定的决策,而此过程中的错误是发展的基础
疾病和癌症。为了有效,信号积分必须与命运之间的协调紧密相关,
即,目标命运计划的激活和替代命运的失活。这是如何实现的?
我最近的博士后工作表明,在培养的神经干细胞(NSC)中,基因调节
基本螺旋 - 环螺旋(BHLH)转录因子的电路使两个信号集成到
类似地激活星形胶质细胞分化并抑制替代命运。转录相互作用
在BHLH中,这是该电路的重要组成部分,但仅它们就无法解释信号积分。
我假设BHLHS的其他两个关键特征起着至关重要的作用:蛋白质级二聚体和
BHLHS的振荡动力学。在这里,我将研究这些功能如何促进信号集成
NSC电路使用二聚化和动力学的定量测量通过精确完成
扰动。此外,我将分析BHLH电路在发育中的斑马鱼脊髓中的作用
了解使用体外系统获得的电路功能原理如何扩展到体内环境。
在AIM 1中,我将通过设计基于新型二聚体突变体来研究BHLH二聚体的作用
在计算序列共同进化分析(与Debora Mark博士合作)上,使用
我开发的基于酵母的定量测量平台,并分析了它们对信号的影响
在AIM 2中,我将在NSC中使用及时的成像和多路复用RNA-FISH的组合
分析BHLH HES1中的振荡动力学如何由上游信号控制,然后
影响电路中的其他BHLH以及下游命运结果。我还将评估异位
调节HES1动力学会影响电路行为。在AIM 3中,我将确定BHLH电路是否以及如何
斑马鱼神经板的干细胞整合了两个发育信号,以使早期的命运选择
这个组织。具体而言,我首先要表征单个单元中的信号活动如何使用A影响其命运
体内时间解体显微镜和靶向信号扰动的组合。然后我将调查如何
BHLH电路中的相互作用介导信号对命运选择的影响。
BHLH因子在发育和成人组织中的大多数干细胞中均表示。 BHLH电路
因此,可以在整合信号信息以实现细胞脂肪决策中发挥无处不在的作用。这项工作
试图广泛了解它们的功能,利用体外和体内的定量方法
我的导师Galit Lahav博士和Sean Megason博士的指导。这项调查将阐明命运的基础
选择多样性的时机,并为“重新连接”此过程提供机会,以改善所需的产生
组织工程的细胞类型或在疾病环境中处理病理命运的选择。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nagarajan Nandagopal其他文献
Nagarajan Nandagopal的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
成人免疫性血小板减少症(ITP)中血小板因子4(PF4)通过调节CD4+T淋巴细胞糖酵解水平影响Th17/Treg平衡的病理机制研究
- 批准号:82370133
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
儿童期受虐经历影响成年人群幸福感:行为、神经机制与干预研究
- 批准号:32371121
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
依恋相关情景模拟对成人依恋安全感的影响及机制
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
依恋相关情景模拟对成人依恋安全感的影响及机制
- 批准号:32200888
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
生活方式及遗传背景对成人不同生命阶段寿命及死亡的影响及机制的队列研究
- 批准号:82173590
- 批准年份:2021
- 资助金额:56.00 万元
- 项目类别:面上项目
相似海外基金
Uncovering Mechanisms of Racial Inequalities in ADRD: Psychosocial Risk and Resilience Factors for White Matter Integrity
揭示 ADRD 中种族不平等的机制:心理社会风险和白质完整性的弹性因素
- 批准号:
10676358 - 财政年份:2024
- 资助金额:
$ 12.47万 - 项目类别:
Climate Change Effects on Pregnancy via a Traditional Food
气候变化通过传统食物对怀孕的影响
- 批准号:
10822202 - 财政年份:2024
- 资助金额:
$ 12.47万 - 项目类别:
A HUMAN IPSC-BASED ORGANOID PLATFORM FOR STUDYING MATERNAL HYPERGLYCEMIA-INDUCED CONGENITAL HEART DEFECTS
基于人体 IPSC 的类器官平台,用于研究母亲高血糖引起的先天性心脏缺陷
- 批准号:
10752276 - 财政年份:2024
- 资助金额:
$ 12.47万 - 项目类别:
The Proactive and Reactive Neuromechanics of Instability in Aging and Dementia with Lewy Bodies
衰老和路易体痴呆中不稳定的主动和反应神经力学
- 批准号:
10749539 - 财政年份:2024
- 资助金额:
$ 12.47万 - 项目类别:
Identifying and Addressing the Effects of Social Media Use on Young Adults' E-Cigarette Use: A Solutions-Oriented Approach
识别和解决社交媒体使用对年轻人电子烟使用的影响:面向解决方案的方法
- 批准号:
10525098 - 财政年份:2023
- 资助金额:
$ 12.47万 - 项目类别: