Personalized Risk Prediction to Reduce Cardiovascular Disease in Childhood Cancer Survivors
个性化风险预测可减少儿童癌症幸存者的心血管疾病
基本信息
- 批准号:10666533
- 负责人:
- 金额:$ 70.12万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-07-15 至 2026-04-30
- 项目状态:未结题
- 来源:
- 关键词:AccountingAddressAdultAdult Hodgkin&aposs LymphomaAftercareAgeAnthracyclineArrhythmiaCancer PatientCancer SurvivorCardiacCardiomyopathiesCardiovascular DiseasesCardiovascular systemCaringCase/Control StudiesCause of DeathCessation of lifeChestChildChildhoodChildhood Cancer Survivor StudyChronicClinicClinicalClinical TrialsCohort StudiesCollaborationsCommunitiesCoronary ArteriosclerosisCoronary arteryCounselingDataData ReportingDiabetes MellitusDisease OutcomeDoseEventFoundationsFutureGoalsHealthHeartHeart AtriumHeart Valve DiseasesHeart failureHeterogeneityHodgkin Lymphoma survivorsHypertensionInstitutionInvestigationLeft ventricular structureLifeLong-Term SurvivorsMalignant NeoplasmsMalignant neoplasm of lungMethodsModalityModelingMorbidity - disease rateNewly DiagnosedObesityOrganOutcomePatient Self-ReportPatientsPediatric OncologyPopulationPremature MortalityRadiationRadiation ToleranceRadiation therapyRecommendationReportingRiskRisk AssessmentRisk FactorsRisk ReductionSaint Jude Children&aposs Research HospitalSmokingSurvival RateSurvivorsSystemTranslatingVentricularWorkadolescent patientcancer therapycardiovascular disorder riskcare providerschemotherapychildhood cancer survivorclinical careclinical practicecohortdemographicsevidence basein silicomodifiable riskmortalitynovelpersonalized medicinepersonalized risk predictionpredictive modelingprematureprospectivereconstructionresponserisk mitigationrisk predictionrisk prediction modelsurvivorshiptooltreatment optimizationtreatment planningweb app
项目摘要
PROJECT SUMMARY/ABSTRACT
Among the half a million childhood cancer survivors alive in the US today, the most commonly reported non-
cancer severe, life-threatening, or fatal chronic condition is cardiovascular disease (CVD) . It is the leading non-
cancer cause of premature death in this population. Heart radiation and anthracycline exposure have been
associated with a variety of CVD outcomes including cardiomyopathy, coronary artery disease (CAD), and
heart valve disease. Investigations of radiation therapy (RT)-related CVD have typically established
associations based solely on whole heart dose metrics; thus, overlooking the heterogeneity of the organ and its
substructures. Our team was the first to report data demonstrating substructure-level dose response of CVD
risk in childhood cancer survivors. Despite establishing distinct radiosentivities, cardiac substructure dose
constraints are not commonly incorporated into RT treatment planning due to the lack o f validated risk
prediction models, thus, missing opportunities to prospectively optimize RT planning and retrospectively
personalize risk-counseling and long-term cardiovascular surveillance in current and future cancer survivors.
The goal of the proposed project is to develop and validate novel CVD risk prediction models that incorporate
cardiac substructure doses. Further, we propose to develop tools to clinically translate these models into
effective personalized treatment paradigms with prospective and retrospective applications for care providers
to reduce CVD risk. We will: (1) develop and validate risk prediction models for cardiomyopathy, CAD, and
heart valve disease incorporating cardiac RT substructure doses, adjusting for demographics and
chemotherapy exposures; and (2) integrate CVD risk prediction models into commercial RT treatment planning
systems and web-based applications, and establish their use via in-silico studies of contemporary patients
treated with RT.
This will be the first investigation to use the unique radiosensitivity of different cardiac substructures as the
foundation for models that can predict the risk of specific types of CVD in children newly diagnosed with cancer
as well as among long-term survivors. Incorporating the substructure doses into prediction models will
significantly advance clinical care for both prospective RT treatment planning and retrospect ive risk
assessments. Prospectively, late CVD risk could be decreased in future survivors by optimizing delivery of
chest-directed RT with cardiac substructure dose constraints and selecting the plan that confers the lowest
risk, while maintaining optimal clinical target volume coverage. Retrospectively post treatment, the clinical team
can provide evidence-based personalized risk mitigation counseling, based on individualized risk profiles
determined from delivered cardiac substructure doses adjusted for chemotherapy exposures and
demographics. Successful execution of the proposed project has the potential to transform clinical practice for
treatment of childhood and adolescent patients with cancer.
项目概要/摘要
在当今美国 50 万儿童癌症幸存者中,最常报告的非癌症幸存者是
癌症 严重的、危及生命的或致命的慢性疾病是心血管疾病(CVD)。它是领先的非
癌症是该人群过早死亡的原因。心脏辐射和蒽环类药物暴露
与多种 CVD 结局相关,包括心肌病、冠状动脉疾病 (CAD) 和
心脏瓣膜疾病。放射治疗 (RT) 相关 CVD 的调查通常已确定
仅基于全心剂量指标的关联;因此,忽视了器官及其异质性
子结构。我们的团队是第一个报告证明 CVD 子结构水平剂量反应的数据的团队
儿童癌症幸存者的风险。尽管建立了不同的放射敏感性,心脏亚结构剂量
由于缺乏经过验证的风险,限制因素通常不会纳入 RT 治疗计划中
预测模型,因此错过了前瞻性优化 RT 规划和回顾性的机会
为当前和未来的癌症幸存者提供个性化的风险咨询和长期心血管监测。
拟议项目的目标是开发和验证新颖的 CVD 风险预测模型,其中包含
心脏亚结构剂量。此外,我们建议开发工具将这些模型临床转化为
有效的个性化治疗范例,为护理提供者提供前瞻性和回顾性应用
以降低 CVD 风险。我们将:(1) 开发并验证心肌病、冠心病和心脏病的风险预测模型
心脏瓣膜疾病合并心脏 RT 亚结构剂量,根据人口统计数据进行调整
化疗暴露; (2) 将 CVD 风险预测模型纳入商业 RT 治疗计划
系统和基于网络的应用程序,并通过对当代患者的计算机研究确定其用途
采用 RT 治疗。
这将是首次利用不同心脏亚结构的独特放射敏感性作为
为新诊断癌症儿童预测特定类型 CVD 风险的模型奠定了基础
以及长期幸存者中。将子结构剂量纳入预测模型将
显着推进前瞻性 RT 治疗计划和回顾性风险的临床护理
评估。前瞻性地,通过优化交付,可以降低未来幸存者的晚期 CVD 风险
具有心脏亚结构剂量限制的胸部定向放疗,并选择提供最低剂量的计划
风险,同时保持最佳的临床目标体积覆盖。临床团队回顾性治疗后
可以根据个性化的风险概况提供循证的个性化风险缓解咨询
根据根据化疗暴露调整的递送心脏亚结构剂量确定,并且
人口统计。拟议项目的成功执行有可能改变临床实践
治疗儿童和青少年癌症患者。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rebecca Maureen Howell其他文献
Rebecca Maureen Howell的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Rebecca Maureen Howell', 18)}}的其他基金
Personalized Risk Prediction to Reduce Cardiovascular Disease in Childhood Cancer Survivors
个性化风险预测可减少儿童癌症幸存者的心血管疾病
- 批准号:
10458172 - 财政年份:2022
- 资助金额:
$ 70.12万 - 项目类别:
Improving Effectiveness and Accuracy of Radiation Therapy
提高放射治疗的有效性和准确性
- 批准号:
7682100 - 财政年份:2007
- 资助金额:
$ 70.12万 - 项目类别:
Improving Effectiveness and Accuracy of Radiation Therapy
提高放射治疗的有效性和准确性
- 批准号:
7498507 - 财政年份:2007
- 资助金额:
$ 70.12万 - 项目类别:
Improving Effectiveness and Accuracy of Radiation Therapy
提高放射治疗的有效性和准确性
- 批准号:
7575501 - 财政年份:2007
- 资助金额:
$ 70.12万 - 项目类别:
相似国自然基金
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Climate Change Effects on Pregnancy via a Traditional Food
气候变化通过传统食物对怀孕的影响
- 批准号:
10822202 - 财政年份:2024
- 资助金额:
$ 70.12万 - 项目类别:
3/4-American Consortium of Early Liver Transplantation-Prospective Alcohol-associated liver disease Cohort Evaluation (ACCELERATE-PACE)
3/4-美国早期肝移植联盟-前瞻性酒精相关性肝病队列评估(ACCELERATE-PACE)
- 批准号:
10711001 - 财政年份:2023
- 资助金额:
$ 70.12万 - 项目类别:
Genetic and Environmental Influences on Individual Sweet Preference Across Ancestry Groups in the U.S.
遗传和环境对美国不同血统群体个体甜味偏好的影响
- 批准号:
10709381 - 财政年份:2023
- 资助金额:
$ 70.12万 - 项目类别: