Osteoclast modulatory biomaterials for skull regeneration
用于颅骨再生的破骨细胞调节生物材料
基本信息
- 批准号:10664867
- 负责人:
- 金额:$ 36.97万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-08-01 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:AffectAutologousBiocompatible MaterialsBiologicalBiomechanicsBone RegenerationBone TransplantationCalvariaCell CommunicationCellsCephalicClinicalCollagenConsumptionDataDefectDevelopmentExtracellular MatrixGlycosaminoglycansGoalsGrowth FactorHumanIn VitroInfectionInflammationKnowledgeMalignant NeoplasmsMediatorMethodsMorbidity - disease rateNatural regenerationNeurologicOperative Surgical ProceduresOryctolagus cuniculusOsteoclastsOsteogenesisPerformancePropertyResearchSafetySecondary toSiteSkeletonStrokeSupplementationSystemTimeTissuesTraumaTumor necrosis factor receptor 11bVascularizationVocationbonebone healingclinical materialclinical translationcongenital anomalycostcraniumcranium plastic repairexperimental studyfabricationimprovedin vivoinhibitormineralizationnanocompositenanoparticulateosteoclastogenesisosteogenicosteoprogenitor cellparacrinepre-clinicalpreclinical efficacypsychologicreconstructionregenerativeregenerative approachregenerative therapyscaffoldsocialstem cell expansionstem cellstechnology development
项目摘要
PROJECT SUMMARY/ABSTRACT
Skull defects occur secondary to trauma, stroke, cancer, and congenital anomalies resulting in significant
neurological, psychological, social, and vocational burdens. Current clinical options for cranioplasty, or calvarial
reconstruction, are limited by availability and morbidity in autologous bone grafts and complications and cost in
alloplastic materials. Such drawbacks provide an opportunity to develop methods that specifically target
calvarial bone regeneration. Despite decades of research, contemporary regenerative strategies consisting of
expanded stem cells and growth factor cocktails delivered by scaffolding materials have not attained clinical
translation due to surgical impracticality, cost, time consumption, and safety concerns. The increasing
knowledge of instructive capabilities of the extracellular matrix (ECM) in cell fate determination has provided an
alternative paradigm for regeneration. We demonstrated that an ECM-inspired material composed of
nanoparticulate mineralized collagen glycosaminoglycan (MC-GAG) regenerates up to 60% the mineralization
and biomechanical properties of native calvarium without ex vivo progenitor cell loading or exogenous growth
factor supplementation. Simultaneously, MC-GAG inhibits osteoclast activation and resorption without affecting
the paracrine osteoinductive properties offered by osteoclasts via direct material to cell interactions as well as
indirectly by inducing osteoprogenitors to secrete osteoprotegerin (OPG), an endogenous inhibitor for
osteoclast activation. With the addition of exogenous OPG, this uncoupling of osteogenesis from
osteoclastogenesis is augmented. In combination, these data provided a proof of principle that a composite
material of MC-GAG and OPG (MCGO) delivered in a temporospatially-limited manner may be a potential
material for calvarial regeneration. In order to develop the MCGO material for clinical translation, three
questions must be answered: 1. What are the mechanisms activated in osteoclasts by direct interactions with
MC-GAG? 2. As the resorptive abilities of osteoclasts are necessary for remodeling and maturation of bone,
how long should OPG exist in the system? 3. Should OPG be eluted or anchored to the material? To answer
these questions, we have developed two MCGO materials via non-covalent and covalent incorporation of OPG
resulting in a high concentration, fast release and a low concentration, extended release MCGO material,
respectively. In Aim 1, we will elucidate the anti-osteoclastogenic mechanisms induced by MC-GAG and
MCGO materials. We hypothesize that MC-GAG and the two MCGO materials will differentially affect hOC
activation and resorption. In Aim 2, we will evaluate the two MCGO materials compared to MC-GAG in rabbit
calvarial regeneration to generate preclinical efficacy, safety, and performance data for MCGO materials
compared to MC-GAG. Our proposed studies are unified in the goal of calvarial regenerative technology
development. At the conclusion of the proposed studies, we expect to have amassed significant preclinical
data to support an IDE application for MCGO materials to the FDA.
项目概要/摘要
颅骨缺陷继发于外伤、中风、癌症和先天性异常,导致严重后果
神经、心理、社会和职业负担。当前颅骨成形术或颅骨成形术的临床选择
重建受到自体骨移植的可用性和发病率以及并发症和成本的限制
异质材料。这些缺点为开发专门针对的方法提供了机会
颅骨骨再生。尽管经过了数十年的研究,当代的再生策略包括
通过支架材料输送的扩增干细胞和生长因子混合物尚未达到临床
由于手术不切实际、成本、时间消耗和安全问题而需要翻译。不断增加的
细胞外基质(ECM)在细胞命运决定中的指导能力的知识提供了
再生的替代范例。我们证明了一种受 ECM 启发的材料由
纳米颗粒矿化胶原糖胺聚糖 (MC-GAG) 可再生高达 60% 的矿化
没有离体祖细胞负载或外源生长的天然颅骨的生物力学特性和生物力学特性
因子补充。同时,MC-GAG 抑制破骨细胞活化和吸收,而不影响
破骨细胞通过材料与细胞的直接相互作用提供的旁分泌骨诱导特性以及
间接通过诱导骨祖细胞分泌骨保护素(OPG),一种内源性抑制剂
破骨细胞激活。添加外源性 OPG 后,骨生成与
破骨细胞生成增强。结合起来,这些数据提供了复合材料的原理证明
以时空有限方式传递的 MC-GAG 和 OPG (MCGO) 材料可能是一种潜在的
颅骨再生材料。为了开发用于临床转化的 MCGO 材料,三个
必须回答的问题: 1. 破骨细胞通过与破骨细胞直接相互作用激活的机制是什么?
MC-GAG? 2. 由于破骨细胞的吸收能力是骨骼重塑和成熟所必需的,
OPG 应该在系统中存在多长时间? 3. OPG 应该洗脱还是固定在材料上?来回答
针对这些问题,我们通过非共价和共价结合 OPG 开发了两种 MCGO 材料
产生高浓度、快速释放和低浓度、缓释的 MCGO 材料,
分别。在目标 1 中,我们将阐明 MC-GAG 诱导的抗破骨细胞生成机制,
MCGO 材料。我们假设 MC-GAG 和两种 MCGO 材料会对 hOC 产生不同的影响
激活和吸收。在目标 2 中,我们将在兔子中评估两种 MCGO 材料与 MC-GAG 的比较
颅骨再生生成 MCGO 材料的临床前功效、安全性和性能数据
与 MC-GAG 相比。我们提出的研究统一于颅骨再生技术的目标
发展。在拟议研究结束时,我们预计将积累重要的临床前研究成果
数据支持向 FDA 提交 MCGO 材料的 IDE 申请。
项目成果
期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Facial Suture Pathology in Syndromic Craniosynostosis: Human and Animal Studies.
颅缝早闭症的面部缝合病理学:人类和动物研究。
- DOI:
- 发表时间:2021-11-01
- 期刊:
- 影响因子:1.5
- 作者:Wang, Maxwell M;Haveles, Christos S;Zukotynski, Brian K;Reid, Russell R;Lee, Justine C
- 通讯作者:Lee, Justine C
COVID-19 Pandemic Associated With Increased Self-reported Depressive Symptoms in Patients With Congenital Craniofacial Diagnoses.
COVID-19 大流行与先天性颅面诊断患者自我报告的抑郁症状增加相关。
- DOI:
- 发表时间:2023-08
- 期刊:
- 影响因子:0
- 作者:Huang, Kelly X;Oberoi, Michelle K;Caprini, Rachel M;Hu, Vivian J;Malapati, Sri Harshini;Mirzaie, Sarah;Bedar, Meiwand;Patel, Harsh;Lee, Justine C
- 通讯作者:Lee, Justine C
Convergence of Calcium Channel Regulation and Mechanotransduction in Skeletal Regenerative Biomaterial Design.
骨骼再生生物材料设计中钙通道调节和力传导的融合。
- DOI:
- 发表时间:2023-10
- 期刊:
- 影响因子:10
- 作者:LaGuardia, Jonnby S;Shariati, Kaavian;Bedar, Meiwand;Ren, Xiaoyan;Moghadam, Shahrzad;Huang, Kelly X;Chen, Wei;Kang, Youngnam;Yamaguchi, Dean T;Lee, Justine C
- 通讯作者:Lee, Justine C
Meta-Analysis and Meta-Regression of Complications and Failures of Autologous Heterotopic Cranial Bone versus Alloplastic Cranioplasties.
自体异位颅骨与异体颅骨成形术并发症和失败的荟萃分析和荟萃回归。
- DOI:
- 发表时间:2023-09-26
- 期刊:
- 影响因子:3.6
- 作者:Oberoi, Michelle K;Mirzaie, Sarah;Huang, Kelly X;Caprini, Rachel M;Hu, Vivian J;Dejam, Dillon;Ge, Shaokui;Cronin, Brendan J;Pfaff, Miles J;Lee, Justine C
- 通讯作者:Lee, Justine C
β-Catenin Limits Osteogenesis on Regenerative Materials in a Stiffness-Dependent Manner.
β-连环蛋白以硬度依赖性方式限制再生材料的成骨。
- DOI:
- 发表时间:2021-12
- 期刊:
- 影响因子:10
- 作者:Zhou, Qi;Ren, Xiaoyan;Oberoi, Michelle K;Bedar, Meiwand;Caprini, Rachel M;Dewey, Marley J;Kolliopoulos, Vasiliki;Yamaguchi, Dean T;Harley, Brendan A C;Lee, Justine C
- 通讯作者:Lee, Justine C
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Justine Chia Lee其他文献
Justine Chia Lee的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Justine Chia Lee', 18)}}的其他基金
Osteoclast modulatory biomaterials for skull regeneration
用于颅骨再生的破骨细胞调节生物材料
- 批准号:
10220944 - 财政年份:2020
- 资助金额:
$ 36.97万 - 项目类别:
Osteoclast modulatory biomaterials for skull regeneration
用于颅骨再生的破骨细胞调节生物材料
- 批准号:
10451692 - 财政年份:2020
- 资助金额:
$ 36.97万 - 项目类别:
PRECLINICAL EVALUATION OF NANOPARTICULATE MINERALIZED COLLAGEN GLYCOSAMINOGLYCAN MATERIALS IN CALVARIAL REGENERATION
纳米颗粒矿化胶原蛋白糖胺聚糖材料在颅骨再生中的临床前评估
- 批准号:
10383680 - 财政年份:2019
- 资助金额:
$ 36.97万 - 项目类别:
PRECLINICAL EVALUATION OF NANOPARTICULATE MINERALIZED COLLAGEN GLYCOSAMINOGLYCAN MATERIALS IN CALVARIAL REGENERATION
纳米颗粒矿化胶原蛋白糖胺聚糖材料在颅骨再生中的临床前评估
- 批准号:
10614475 - 财政年份:2019
- 资助金额:
$ 36.97万 - 项目类别:
PRECLINICAL EVALUATION OF NANOPARTICULATE MINERALIZED COLLAGEN GLYCOSAMINOGLYCAN MATERIALS IN CALVARIAL REGENERATION
纳米颗粒矿化胶原蛋白糖胺聚糖材料在颅骨再生中的临床前评估
- 批准号:
9906198 - 财政年份:2019
- 资助金额:
$ 36.97万 - 项目类别:
Human Bone Engineering and Resorption in a Novel Mineralized Collagen Scaffold
新型矿化胶原蛋白支架中的人体骨骼工程和吸收
- 批准号:
9105156 - 财政年份:2015
- 资助金额:
$ 36.97万 - 项目类别:
Human Bone Engineering and Resorption in a Novel Mineralized Collagen Scaffold
新型矿化胶原蛋白支架中的人体骨骼工程和吸收
- 批准号:
8921043 - 财政年份:2015
- 资助金额:
$ 36.97万 - 项目类别:
Human Bone Engineering and Resorption in a Novel Mineralized Collagen Scaffold
新型矿化胶原蛋白支架中的人体骨骼工程和吸收
- 批准号:
9335249 - 财政年份:2015
- 资助金额:
$ 36.97万 - 项目类别:
相似国自然基金
输送自体融合免疫细胞调节肿瘤微环境用于三阴性乳腺癌治疗的研究
- 批准号:82303754
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
负压诱导下自体外周血单核细胞来源的凋亡囊泡对颞下颌关节骨关节炎的临床治疗研究
- 批准号:82370985
- 批准年份:2023
- 资助金额:70 万元
- 项目类别:面上项目
自体无创干细胞线粒体移植改善高龄IVF女性早期胚胎质量的有效性及机制研究
- 批准号:82301958
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
原位诱导自体自组织组织工程皮肤的应用基础研究
- 批准号:82372514
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
甲状旁腺自体荧光的动力学过程及其增强技术研究
- 批准号:62305190
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Development of optoelectronically active nerve adhesive for accelerating peripheral nerve repair
开发用于加速周围神经修复的光电活性神经粘合剂
- 批准号:
10811395 - 财政年份:2023
- 资助金额:
$ 36.97万 - 项目类别:
Development of a Biomimetic Stentless Pulmonary Heart Valve for the Treatment of Pediatric Congenital Heart Disease
开发用于治疗小儿先天性心脏病的仿生无支架肺心瓣膜
- 批准号:
10696291 - 财政年份:2023
- 资助金额:
$ 36.97万 - 项目类别:
Highly Elastic Biomaterial Development for Urethral Application
尿道应用的高弹性生物材料开发
- 批准号:
10573094 - 财政年份:2023
- 资助金额:
$ 36.97万 - 项目类别:
Sacrificial templated grafts to encourage bone healing through mechanotransduction
牺牲模板移植物通过机械传导促进骨愈合
- 批准号:
10811305 - 财政年份:2023
- 资助金额:
$ 36.97万 - 项目类别:
Multi-tissue type condensations for trachea tissue regeneration via individual cell bioprinting
通过单细胞生物打印进行气管组织再生的多组织类型浓缩
- 批准号:
10643041 - 财政年份:2023
- 资助金额:
$ 36.97万 - 项目类别: