Probing the Role of Mitochondrial Short-chain Carbon Homeostasis in the Hypertrophied and Failing Heart
探讨线粒体短链碳稳态在肥厚和衰竭心脏中的作用
基本信息
- 批准号:9103283
- 负责人:
- 金额:$ 92.52万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-04-01 至 2020-03-31
- 项目状态:已结题
- 来源:
- 关键词:Acetyl Coenzyme AAcetylationAddressAnimal ModelAutomobile DrivingBioenergeticsCarbonCardiacCardiac MyocytesCessation of lifeChronicData SetDevelopmentDiseaseDisease ProgressionDown-RegulationEnergy-Generating ResourcesEtiologyEventFatty AcidsFunctional disorderFundingGene TargetingGenesGlucoseGoalsHeartHeart HypertrophyHeart failureHomeostasisHumanHypertensionHypertrophyKetone BodiesKetonesMetabolicMetabolismMitochondriaMitochondrial ProteinsMusMyocardialNational Heart, Lung, and Blood InstituteNutraceuticalOxidative PhosphorylationPathogenesisPathologicPhysiologicalPrevention strategyProcessProtein AcetylationProteinsProteomicsPublishingRegulator GenesRoleRouteSamplingSeriesSourceStagingStarvationSystems BiologyTestingTissuesTranscriptVentricular Functionbasecomparativedesignend stage diseaseexercise trainingfatty acid oxidationglobal healthinnovationinorganic phosphateknockout genemetabolomicsmouse modelnew therapeutic targetnovel strategiesnovel therapeutic interventionoxidationpressurepreventprotein functionpublic health relevanceresearch studystoichiometrytherapeutic targettranscriptomics
项目摘要
DESCRIPTION (provided by applicant): Significant evidence indicates that during the development of heart failure (HF) the heart undergoes dramatic alterations in mitochondrial fuel metabolism and bioenergetics. Specifically, the capacity for oxidizing the chief fuels, fatty acids
and glucose, becomes constrained during the development of cardiac hypertrophy, and in the failing heart. Studies in animal models and in humans have shown that a reduction in myocardial high-energy phosphate stores occurs in early stages of HF, setting the stage for a vicious cycle of "energy-starvation", contractile dysfunction, and progression of disease. To date, most studies aimed at delineating mechanisms driving the energy metabolic derangements of HF have been conducted in late stage disease, and have focused on gene regulatory mechanisms. The results of such studies have pointed to altered mitochondrial function, cardiac myocyte death, and widespread downregulation of genes involved in mitochondrial energy transduction. However, it is likely that many of these abnormalities reflect end-stage irreversible processes. Over the past several years, we have embarked on studies to elucidate energy metabolic remodeling events that occur in early stages of pathologic remodeling in route to HF in well-defined mouse models. For these studies, we employed a systems biology approach supported by an NHLBI-supported team-based funding initiative (RFA-HL-10-002). Integrated transcriptomic and metabolomics profiling was conducted on heart samples representing pathologic (pressure overload) and adaptive (exercise training) forms of cardiac hypertrophy, and in the early stages of HF. Comparative analysis of the datasets led to several surprising findings that have led to the hypothesis that during the early stages of pathologic cardiac remodeling caused by pressure overload, a myocardial substrate shift from reliance on fatty acids to ketone utilization sets the stage for expansion of the mitochondrial acetyl-CoA pool resulting in hyperacetylation of mitochondrial proteins, further reducing capacity for fuel oxidation and contributing to the pathogenesis of HF. We have assembled a multi-PI team to address this hypothesis. In Aim 1, we will employ a novel approach to define the stoichiometry of mitochondrial protein acetylation, and determine its functional consequences, in the early stage failing mouse heart. In Aim 2, we will determine the impact of modulating mitochondrial short-chain carbon export on protein acetylation, substrate metabolism, and remodeling in the normal, hypertrophied, and failing heart. Aim 3 is designed to explore the impact of chronic shifts in myocardial fuel utilization on cardiac mitochondrial protein acetylatio, substrate metabolism, and remodeling in the normal and failing mouse heart. The long-term goal of this project is to identify new mechanisms and therapeutic targets relevant to the development of innovative metabolic modulatory strategies for the prevention and early-stage treatment of heart failure.
描述(由适用提供):大量证据表明,在心力衰竭(HF)的发展过程中,心脏会经历线粒体燃料代谢和生物能学的急剧改变。具体而言,氧化主要燃料,脂肪酸的能力
葡萄糖在心脏肥大的发展和心脏失败的过程中受到约束。在动物模型和人类中的研究表明,在HF的早期阶段,心肌高能磷酸盐储存的降低,为“能量饥饿”,收缩功能障碍和疾病进展的奇妙循环奠定了基础。迄今为止,大多数旨在描述驱动HF能量代谢演化的机制的研究是在最新阶段疾病中进行的,并专注于基因调节机制。此类研究的结果表明,线粒体肌细胞死亡和涉及线粒体能量转移的基因的宽度下调的改变改变了。但是,这些异常可能反映了最终不可逆的过程。在过去的几年中,我们开始进行研究,以阐明在定义明确的小鼠模型中,在病理重塑的早期途径中发生的能量代谢重塑事件。对于这些研究,我们采用了一种系统生物学方法,该方法由NHLBI支持的基于团队的资金计划(RFA-HL-10-002)支持。对代表病理学(压力超负荷)和自适应(运动训练)心脏肥大的心脏样本以及HF的早期阶段进行了综合转录组和代谢组学分析。对数据集的比较分析导致了一些令人惊讶的发现,这导致了以下假设:在压力超负荷的病理心脏重塑的早期阶段,从脂肪酸的缓解到酮酮利用率的心肌底物转变为在型乙酰含量的量含量均可用蛋白量的蛋白质蛋白质蛋白质蛋白质蛋白均取代蛋白质的稳定剂量,从而导致均取代蛋白质的含量。并有助于HF的发病机理。我们组建了一个多PIC团队来解决这一假设。在AIM 1中,我们将采用一种新的方法来定义线粒体蛋白乙酰化的化学计量,并在早期失败的小鼠心脏中确定其功能后果。在AIM 2中,我们将确定调节线粒体短链碳的导出对蛋白质乙酰化,底物代谢以及在正常,肥大和心脏失败的心脏中进行重塑的影响。 AIM 3旨在探索心肌燃料利用中慢性转移对心脏线粒体蛋白乙酰磷脂的影响,底物代谢以及在正常和失败的小鼠心脏中进行重塑。该项目的长期目标是确定与开发创新的代谢调节策略相关的新机制和治疗靶标,以预防和早期治疗心力衰竭。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
DANIEL PATRICK KELLY其他文献
DANIEL PATRICK KELLY的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('DANIEL PATRICK KELLY', 18)}}的其他基金
Targeting Ketone Metabolism as a Novel Heart Failure Therapy
以酮代谢为目标的新型心力衰竭疗法
- 批准号:
10371874 - 财政年份:2020
- 资助金额:
$ 92.52万 - 项目类别:
Targeting Ketone Metabolism as a Novel Heart Failure Therapy
以酮代谢为目标的新型心力衰竭疗法
- 批准号:
10592265 - 财政年份:2020
- 资助金额:
$ 92.52万 - 项目类别:
Probing the Role of Mitochondrial Short-chain Carbon Homeostasis in the Hypertrophied and Failing Heart
探讨线粒体短链碳稳态在肥厚和衰竭心脏中的作用
- 批准号:
9247800 - 财政年份:2016
- 资助金额:
$ 92.52万 - 项目类别:
Probing the Role of Mitochondrial Short-chain Carbon Homeostasis in the Hypertrophied and Failing Heart
探讨线粒体短链碳稳态在肥厚和衰竭心脏中的作用
- 批准号:
10296253 - 财政年份:2016
- 资助金额:
$ 92.52万 - 项目类别:
Probing the Role of Mitochondrial Short-chain Carbon Homeostasis in the Hypertrophied and Failing Heart
探讨线粒体短链碳稳态在肥厚和衰竭心脏中的作用
- 批准号:
10643903 - 财政年份:2016
- 资助金额:
$ 92.52万 - 项目类别:
Probing the Role of Mitochondrial Short-chain Carbon Homeostasis in the Hypertrophied and Failing Heart
探讨线粒体短链碳稳态在肥厚和衰竭心脏中的作用
- 批准号:
10430277 - 财政年份:2016
- 资助金额:
$ 92.52万 - 项目类别:
A Genomic/Metabolomic Strategy to Characterize Cardiac Mitochondrial Dysfunction
表征心脏线粒体功能障碍的基因组/代谢组学策略
- 批准号:
7847729 - 财政年份:2010
- 资助金额:
$ 92.52万 - 项目类别:
A Genomic/Metabolomic Strategy to Characterize Cardiac Mitochondrial Dysfunction
表征心脏线粒体功能障碍的基因组/代谢组学策略
- 批准号:
8241923 - 财政年份:2010
- 资助金额:
$ 92.52万 - 项目类别:
A Genomic/Metabolomic Strategy to Characterize Cardiac Mitochondrial Dysfunction
表征心脏线粒体功能障碍的基因组/代谢组学策略
- 批准号:
8435396 - 财政年份:2010
- 资助金额:
$ 92.52万 - 项目类别:
A Genomic/Metabolomic Strategy to Characterize Cardiac Mitochondrial Dysfunction
表征心脏线粒体功能障碍的基因组/代谢组学策略
- 批准号:
8063188 - 财政年份:2010
- 资助金额:
$ 92.52万 - 项目类别:
相似国自然基金
仙茅酚苷类成分靶向组蛋白去乙酰化酶HDAC1抑制BMSC衰老防治老年性骨质疏松的机制
- 批准号:82304806
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
丁酸上调HSD11b2乙酰化抑制HPA轴激活改善孤独症样社交障碍机制研究
- 批准号:82372559
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
ACSS2介导的乙酰辅酶a合成在巨噬细胞组蛋白乙酰化及急性肺损伤发病中的作用机制研究
- 批准号:82370084
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
高糖水平通过JUN乙酰化修饰上调NCAPD3促进结直肠癌发生的分子机制
- 批准号:82303250
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
芪苓温肾消囊颗粒通过HDAC5调控GATA1启动子区H3K27乙酰化改善PCOS妊娠早期流产的机制研究
- 批准号:82374498
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
相似海外基金
Delineating mechanisms underlying the enhanced stability and functionality of CD2-KO Tregs and chimeric antigen receptor (CAR) Tregs and their application in xenotransplantation
描述 CD2-KO Tregs 和嵌合抗原受体 (CAR) Tregs 稳定性和功能增强的机制及其在异种移植中的应用
- 批准号:
10646753 - 财政年份:2023
- 资助金额:
$ 92.52万 - 项目类别:
Metabolism and Epigenetic Regulation are Couples in Transdifferentiation and Vascular Regeneration
代谢和表观遗传调控是转分化和血管再生的结合体
- 批准号:
10905167 - 财政年份:2023
- 资助金额:
$ 92.52万 - 项目类别:
Mechanisms of GM-CSF-mediated metabolic regulation of monocyte function for control of pulmonary infection
GM-CSF介导的单核细胞功能代谢调节控制肺部感染的机制
- 批准号:
10877377 - 财政年份:2023
- 资助金额:
$ 92.52万 - 项目类别:
Epigenetic and metabolic mechanisms of environmentally-induced transgenerational germline dysfunction
环境诱导的跨代种系功能障碍的表观遗传和代谢机制
- 批准号:
10606928 - 财政年份:2023
- 资助金额:
$ 92.52万 - 项目类别:
Spatial Acetyl-CoA metabolism as a regulator of Hallmarks of Aging
空间乙酰辅酶A代谢作为衰老标志的调节剂
- 批准号:
10901039 - 财政年份:2023
- 资助金额:
$ 92.52万 - 项目类别: