Development of a portable and compact robotic system for frameless and maskless stereotactic radiosurgery
开发用于无框架和无面罩立体定向放射外科的便携式紧凑型机器人系统
基本信息
- 批准号:10533318
- 负责人:
- 金额:$ 33.22万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-12-04 至 2024-11-30
- 项目状态:已结题
- 来源:
- 关键词:3-Dimensional3D PrintAdvanced DevelopmentAnatomyArteriesBackBody Weight decreasedBrainBrain NeoplasmsBrain StemCephalicClinicClinicalClinical ResearchClinical TrialsComplexCouplingDevelopmentDoseEnvironmentFreedomGelHeadHourImageImmobilizationJointsLawsLinear Accelerator Radiotherapy SystemsLocal anesthesiaMasksMedicalMetalsMethodsModalityMotionNatureNerveOperative Surgical ProceduresPatientsPersonsPositioning AttributePreparationRadiationRadiation Dose UnitRadiation therapyRadiosurgeryResearchRisk ReductionRobotRoboticsRotationScheduleSiteStructureSurfaceSurgical complicationSwellingSystemTechniquesTestingTherapeuticTimeUncertaintyValidationbonebrain tissuecompliance behaviorcraniumdesign and constructionface maskhealthy volunteerimprovedmanufacturing qualitymeetingsmillimeternovelpatient populationpatient safetyportabilityrobot controlrobotic systemsample fixationsimulationskillssuccesstherapy outcometraditional therapytreatment planningtumorvolunteer
项目摘要
ABSTRACT
Stereotactic radiosurgery (SRS) is a non-surgical technique used to treat functional abnormalities and small
tumors of the brain. It delivers precisely targeted radiation in fewer high dose treatments than traditional
therapy and allows access to sites that would otherwise be difficult or inadvisable to treat due to potential
surgical complications to nearby nerves, arteries, and other vital structures. To achieve the 1-2mm precision
for intracranial SRS, a metal head ring is rigidly fixated to the patient’s skull using screws under local
anesthesia, and then bolted to the treatment couch. The discomfort, inconvenience, and invasive nature
associated with the frame preparation have been identified as a serious cause of poor patient compliance and
poor clinical efficiencies when SRS is medically indicated. For certain patients, with extreme cranial anatomy or
prior surgical bone flaps, ring placement is not possible. In addition, the frame prohibits cases when a hypo-
fractionated scheduled is desired leading to the use of techniques with far less accuracy. For clinics, with tight
patient linear accelerator (LINAC) scheduling, or high patient to LINAC volumes, frame based SRS scheduling
can prove to be problematic due to the necessity of performing the CT simulation, treatment planning, LINAC
SRS QA, patient setup, and treatment on the same day. Research aimed at eliminating the frame through the
use of thermoplastic face masks have resulted in SRS with less accuracy as mask flex can lead to systematic
drift of up to 2-3mm away from the intended target due to rotation about the fulcrum at the back of the skull.
Additionally, mask based immobilization accuracy is highly dependent on mask manufacturing quality, skill of
the person applying the mask, shrinkage of the mask during treatment, and physical changes of the patient’s
head due to swelling or weight loss. In certain cases this has led to uncertainties as large as 6 mm and 2.5
degrees. Such accuracies are not suitable for deep tumors located near critical structures such as the brain
stem or for newer treatment modalities such as single iso-center multiple target SRS which are highly sensitive
to rotational errors.
We propose to solve these problems by developing a novel robotic SRS system that does not require a frame
or mask. The hypothesis is that the use of real-time 6 degree of freedom (6DOF) patient head motion tracking
and active robotic control systems can assist patients in maintaining a stable sub-millimeter sub-degree head
position for long periods of time. Specific aims include: (1) To develop an advanced real-time 6DOF trajectory
control law. (2) Design and construction of a clinical robotic SRS system using real-time 3D surface image
tracking. (3) Anthropomorphic phantom, healthy volunteer and patient clinical trials.
抽象的
立体定向放射外科 (SRS) 是一种非手术技术,用于治疗功能异常和小肿瘤
与传统疗法相比,它以更少的高剂量治疗提供精确的靶向放射治疗。
治疗并允许进入由于潜在的潜在危险而难以或不建议治疗的部位
手术并发症对附近的神经、动脉和其他重要结构的影响达到1-2毫米的精度。
对于颅内 SRS,使用局部螺钉将金属头环牢固地固定在患者的颅骨上。
麻醉,然后跑到治疗床上,这会带来不适、不便和侵入性。
与框架准备相关的问题已被确定为患者依从性差的严重原因,
对于某些具有极端颅骨解剖结构或特征的患者,当有医学指征时,临床效率较差。
之前的手术骨瓣,环放置是不可能的此外,框架禁止情况下,当一个hypo-。
对于诊所来说,需要进行分段计划,这导致使用的技术的准确性要低得多。
患者直线加速器 (LINAC) 调度,或高患者至 LINAC 容量、基于帧的 SRS 调度
由于需要执行 CT 模拟、治疗计划、直线加速器 (LINAC),可能会出现问题
SRS QA、患者设置和治疗在同一天进行,旨在通过该框架消除框架。
使用热塑性面罩导致 SRS 精度较低,因为面罩弯曲会导致系统性
由于围绕头骨后部的支点旋转,偏离预期目标最多 2-3 毫米。
此外,基于面罩的固定精度在很大程度上取决于面罩的制造质量、技术人员的技能。
佩戴口罩的人、口罩在治疗过程中的收缩情况以及患者的身体变化
在某些情况下,由于肿胀或体重减轻,这导致头部尺寸不确定为 6 毫米和 2.5 毫米。
这种精度不适用于位于大脑等关键结构附近的深部肿瘤。
干或较新的治疗方式,例如高度敏感的单等中心多目标 SRS
到旋转误差。
我们建议通过开发一种不需要框架的新型机器人 SRS 系统来解决这些问题
假设是使用实时 6 自由度 (6DOF) 患者头部运动跟踪。
主动机器人控制系统可以帮助患者保持稳定的亚毫米亚度头部
具体目标包括:(1)开发先进的实时六自由度轨迹。
(2)使用实时3D表面图像的临床机器人SRS系统的设计和构建。
(3)拟人体模、健康志愿者和患者临床试验。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A conceptual study on real-time adaptive radiation therapy optimization through ultra-fast beamlet control.
通过超快子束控制进行实时自适应放射治疗优化的概念研究。
- DOI:
- 发表时间:2019-08
- 期刊:
- 影响因子:1.4
- 作者:Wiersma, Rodney D;Liu, Xinmin
- 通讯作者:Liu, Xinmin
Mechanism and Model of a Soft Robot for Head Stabilization in Cancer Radiation Therapy.
癌症放射治疗中用于头部稳定的软体机器人的机制和模型。
- DOI:
- 发表时间:2020-05
- 期刊:
- 影响因子:0
- 作者:Ogunmolu, Olalekan;Liu, Xinmin;Gans, Nicholas;Wiersma, Rodney D
- 通讯作者:Wiersma, Rodney D
An AI-based universal phantom analysis method based on XML-SVG wireframes with novel functional object identifiers.
一种基于 AI 的通用模型分析方法,基于 XML-SVG 线框,具有新颖的功能对象标识符。
- DOI:
- 发表时间:2023-07-14
- 期刊:
- 影响因子:3.5
- 作者:Sakaamini, Ahmad;Van Slyke, Alexander;Partouche, Julien;Wu, Tianming;Wiersma, Rodney D
- 通讯作者:Wiersma, Rodney D
Optimization based trajectory planning for real-time 6DoF robotic patient motion compensation systems.
基于优化的实时 6DoF 机器人患者运动补偿系统的轨迹规划。
- DOI:
- 发表时间:2019
- 期刊:
- 影响因子:3.7
- 作者:Liu, Xinmin;Wiersma, Rodney D
- 通讯作者:Wiersma, Rodney D
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rodney Wiersma其他文献
Rodney Wiersma的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Rodney Wiersma', 18)}}的其他基金
Project 4: Development and validation of Pencil Beam Scanning methodology for particle FLASH radiotherapy
项目 4:用于粒子闪光放射治疗的笔形束扫描方法的开发和验证
- 批准号:
10573298 - 财政年份:2022
- 资助金额:
$ 33.22万 - 项目类别:
Project 4: Development and validation of Pencil Beam Scanning methodology for particle FLASH radiotherapy
项目 4:用于粒子闪光放射治疗的笔形束扫描方法的开发和验证
- 批准号:
10333801 - 财政年份:2022
- 资助金额:
$ 33.22万 - 项目类别:
Development of a portable and compact robotic system for frameless and maskless stereotactic radiosurgery
开发用于无框架和无面罩立体定向放射外科的便携式紧凑型机器人系统
- 批准号:
10047519 - 财政年份:2018
- 资助金额:
$ 33.22万 - 项目类别:
Development of a portable and compact robotic system for frameless and maskless stereotactic radiosurgery
开发用于无框架和无面罩立体定向放射外科的便携式紧凑型机器人系统
- 批准号:
10307093 - 财政年份:2018
- 资助金额:
$ 33.22万 - 项目类别:
相似国自然基金
基于3D生物打印类器官模型探究PAK5调控三阴性乳腺癌铂类耐药的机制研究
- 批准号:82303979
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
3D打印单向流场诱导构筑多级有序电磁屏蔽结构及调控机理研究
- 批准号:52303036
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
3D纳米打印复合金属硫化物阵列反应器光催化CO2还原制C2研究
- 批准号:22378174
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
自由曲面空间网格结构3D打印节点力学性能与智能优化研究
- 批准号:52378167
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
丝内/丝间空洞对3D打印连续纤维复合材料损伤机理影响机制与分析方法
- 批准号:52375150
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
New Hardware and Software Developments for Improving Prostate Metabolic MR Imaging
用于改善前列腺代谢 MR 成像的新硬件和软件开发
- 批准号:
10680043 - 财政年份:2023
- 资助金额:
$ 33.22万 - 项目类别:
Harnessing Continuous Liquid Interface 3D Printing to Improve Tumor-homing Stem Cell Therapy for Post-surgical Brain Cancer
利用连续液体界面 3D 打印改善脑癌术后肿瘤归巢干细胞疗法
- 批准号:
10420701 - 财政年份:2022
- 资助金额:
$ 33.22万 - 项目类别:
Harnessing Continuous Liquid Interface 3D Printing to Improve Tumor-homing Stem Cell Therapy for Post-surgical Brain Cancer
利用连续液体界面 3D 打印改善脑癌术后肿瘤归巢干细胞疗法
- 批准号:
10552623 - 财政年份:2022
- 资助金额:
$ 33.22万 - 项目类别:
Bone Regeneration Induced by the Sustained Release of Osteoinductive microRNAs from 3D-printed Constructs
3D 打印结构中持续释放骨诱导性 microRNA 诱导骨再生
- 批准号:
10311132 - 财政年份:2021
- 资助金额:
$ 33.22万 - 项目类别:
Bone Regeneration Induced by the Sustained Release of Osteoinductive microRNAs from 3D-printed Constructs
3D 打印结构中持续释放骨诱导性 microRNA 诱导骨再生
- 批准号:
10487443 - 财政年份:2021
- 资助金额:
$ 33.22万 - 项目类别: