Bone Regeneration Induced by the Sustained Release of Osteoinductive microRNAs from 3D-printed Constructs
3D 打印结构中持续释放骨诱导性 microRNA 诱导骨再生
基本信息
- 批准号:10311132
- 负责人:
- 金额:$ 4.14万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-03 至 2023-07-02
- 项目状态:已结题
- 来源:
- 关键词:3-Dimensional3D PrintAdvanced DevelopmentAdverse effectsAllograftingArchitectureAutologous TransplantationBiocompatible MaterialsBiodegradationBiologicalBiological AssayBiologyBiomedical EngineeringBone DevelopmentBone Morphogenetic ProteinsBone RegenerationBone TransplantationCalvariaCell Differentiation processCell-Matrix JunctionCellsClinicClinicalClinical TreatmentComplexDataDefectDevelopmentDimensionsDoseEssential GenesExtracellular MatrixFDA approvedFamilyFellowshipGelatinGene ExpressionGoalsGrowthHybridsImplantIn VitroInfiltrationInvestigationMedicineMethodsMicroRNAsNuclearNutrientOrgan TransplantationOrthopedicsOsteogenesisPatientsPolymersPorosityPositioning AttributeProductionPropertyProteinsRattusResearchResearch TrainingSignal TransductionStainsStructureTechnologyTestingTimeTissue EngineeringTissuesTranscriptWorkbonebone marrow mesenchymal stem cellbone metabolismcaprolactonecell motilityclinical applicationclinical translationclinically relevantcrosslinkdensitydesignin vivoin vivo regenerationindividualized medicineinnovationinsightmembermigrationmultidisciplinarynew technologynovelosteogenicpreventregeneration potentialregenerativereplacement tissuerestorationscaffold
项目摘要
Project Summary/Abstract:
Large bone defects are clincially challenging to treat and often necessitate bone grafting. Natural grafting
options include autografts and allografts; however, these replacement tissues are limited in supply and difficult
to match to the dimensional irregularities of complex bone defects. The development of tissue-engineered (TE)
synthetic grafts has become essential to overcome the limitations of natural grafts; however, deficient scaffold
fabrication methods and inefficient osteoinductive agents have prevented the clinical translation of traditional
TE constructs. Therefore, the design of advanced synthetic grafts that overcome these limitations would
greatly impact the clinical treatment of large bone defects. The long-term goal of this proposed work is to
develop biodegradable, 3D-printed constructs with osteoconductive and inductive properties toward clinical use
for the treatment of patient-specific bone defects. The objective of this proposal aims to develop a TE construct
for bone regeneration using a hybrid materials approach that includes both synthetic and natural polymers in
the 3D-printed structure, combined with the sustained release of osteoinductive microRNAs. Advanced TE
constructs for this investigation will combine 3D-printable, FDA-approved polymers with tunable biodegradation
rates with natural polymer coatings to sustain the release of osteoinductive microRNAs. The central hypothesis
of this work is that the sustained release of osteoinductive microRNAs from polymer-coated 3D-printed
constructs will enhance the osteogenic capabilities of synthetic grafts by prolonging regenerative signaling to
maximize bone regeneration. To test this hypothesis, we will characterize microRNA release from polymer-
coated 3D-printed constructs (Aim 1), assess in vitro osteogenic differentiation induced by microRNA release
from polymer-coated constructs (Aim 2), and evaluate the bone regeneration potential of polymer-coated
microRNA-incorporated 3D-printed constructs (Aim 3). Collectively, these data with elucidate mechanisms in
which microRNA release from polymer-coated 3D-printed scaffolds can be optimized to sustain the release of
osteoinductive signals and maximize bone regeneration. These results will advance the development of
synthetic TE constructs to include both osteoconductive and inductive properties that will effectively promote
bone regeneration, and thus significantly impact the clinical treatment of challenging, patient-specific bone
defects.
项目摘要/摘要:
大骨缺损的临床治疗具有挑战性,通常需要骨移植。自然嫁接
选项包括自体移植和同种异体移植;然而,这些替代组织的供应有限且困难
以匹配复杂骨缺损的尺寸不规则性。组织工程(TE)的发展
合成移植物对于克服天然移植物的局限性至关重要;但脚手架不足
制造方法和低效的骨诱导剂阻碍了传统骨诱导剂的临床转化
TE 构建。因此,克服这些限制的先进合成移植物的设计将
极大地影响了大骨缺损的临床治疗。这项拟议工作的长期目标是
开发具有骨传导和诱导特性的可生物降解的 3D 打印结构,供临床使用
用于治疗患者特定的骨缺损。该提案的目标是开发 TE 结构
使用混合材料方法进行骨再生,其中包括合成和天然聚合物
3D 打印的结构与骨诱导性 microRNA 的持续释放相结合。高级TE
这项研究的结构将结合可 3D 打印、FDA 批准的聚合物和可调节的生物降解能力
天然聚合物涂层的速率可维持骨诱导性 microRNA 的释放。中心假设
这项工作的重点是从聚合物涂层的 3D 打印材料中持续释放骨诱导性 microRNA
结构将通过延长再生信号来增强合成移植物的成骨能力
最大限度地促进骨再生。为了检验这一假设,我们将表征从聚合物中释放的 microRNA
涂层 3D 打印结构(目标 1),评估 microRNA 释放诱导的体外成骨分化
来自聚合物涂层结构(目标 2),并评估聚合物涂层的骨再生潜力
掺入 microRNA 的 3D 打印结构(目标 3)。总的来说,这些数据阐明了机制
可以优化聚合物涂层 3D 打印支架中的 microRNA 释放,以持续释放
骨诱导信号并最大化骨再生。这些成果将推动我国的发展
合成 TE 结构包括骨传导和诱导特性,可有效促进
骨再生,从而显着影响具有挑战性的患者特异性骨的临床治疗
缺陷。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Matthew T Remy其他文献
Rat Calvarial Bone Regeneration by 3D-Printed Beta-Tricalcium Phosphate Incorporating MicroRNA-200c
通过 3D 打印结合 MicroRNA-200c 的 β-磷酸三钙实现大鼠颅骨再生
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Matthew T Remy;Adil Akkouch;Li He;S. Eliason;M. Sweat;Tadkamol Krongbaramee;F. Qian;B. Amendt;Xuan Song;L. Hong - 通讯作者:
L. Hong
MicroRNA-200c Release from Gelatin-Coated 3D-Printed PCL Scaffolds Enhances Bone Regeneration
MicroRNA-200c 从明胶涂层 3D 打印 PCL 支架中释放可增强骨再生
- DOI:
10.1021/acsbiomaterials.3c01105 - 发表时间:
2024-03-26 - 期刊:
- 影响因子:5.8
- 作者:
Matthew T Remy;C. Upara;Q. J. Ding;Jacob M. Miszuk;Hongli Sun;L. Hong - 通讯作者:
L. Hong
Occupational-like organophosphate exposure disrupts microglia and accelerates deficits in a rat model of Alzheimer’s disease
类似职业的有机磷暴露会破坏小胶质细胞并加速阿尔茨海默病大鼠模型的缺陷
- DOI:
10.1038/s41514-018-0033-3 - 发表时间:
2019-01-22 - 期刊:
- 影响因子:0
- 作者:
Jaymie R. Voorhees;Matthew T Remy;C. Erickson;Laura M. Dutca;D. Brat;A. Pieper - 通讯作者:
A. Pieper
CaCO3 Nanoparticles Delivering MicroRNA-200c Suppress Oral Squamous Cell Carcinoma
CaCO3 纳米颗粒传递 MicroRNA-200c 抑制口腔鳞状细胞癌
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Q. J. Ding;Matthew T Remy;C. Upara;Jue Hu;Andrés V. Mora Mata;A. J. Haes;E. Lanzel;Hongli Sun;M. R. Buchakjian;L. Hong - 通讯作者:
L. Hong
Plasmid encoding miRNA-200c delivered by CaCO3-based nanoparticles enhances rat alveolar bone formation.
由基于 CaCO3 的纳米颗粒递送的编码 miRNA-200c 的质粒可增强大鼠牙槽骨的形成。
- DOI:
10.2217/nnm-2022-0151 - 发表时间:
2022-09-20 - 期刊:
- 影响因子:5.5
- 作者:
Matthew T Remy;Qiong Ding;Tadkamol Krongbaramee;Jue Hu;A. V. Mora Mata;A. Haes;Brad A. Amendt;Hongli Sun;M. Buchakjian;L. Hong - 通讯作者:
L. Hong
Matthew T Remy的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Matthew T Remy', 18)}}的其他基金
Bone Regeneration Induced by the Sustained Release of Osteoinductive microRNAs from 3D-printed Constructs
3D 打印结构中持续释放骨诱导性 microRNA 诱导骨再生
- 批准号:
10487443 - 财政年份:2021
- 资助金额:
$ 4.14万 - 项目类别:
相似国自然基金
基于3D生物打印类器官模型探究PAK5调控三阴性乳腺癌铂类耐药的机制研究
- 批准号:82303979
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
3D打印单向流场诱导构筑多级有序电磁屏蔽结构及调控机理研究
- 批准号:52303036
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
3D纳米打印复合金属硫化物阵列反应器光催化CO2还原制C2研究
- 批准号:22378174
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
自由曲面空间网格结构3D打印节点力学性能与智能优化研究
- 批准号:52378167
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
丝内/丝间空洞对3D打印连续纤维复合材料损伤机理影响机制与分析方法
- 批准号:52375150
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
New Hardware and Software Developments for Improving Prostate Metabolic MR Imaging
用于改善前列腺代谢 MR 成像的新硬件和软件开发
- 批准号:
10680043 - 财政年份:2023
- 资助金额:
$ 4.14万 - 项目类别:
Harnessing Continuous Liquid Interface 3D Printing to Improve Tumor-homing Stem Cell Therapy for Post-surgical Brain Cancer
利用连续液体界面 3D 打印改善脑癌术后肿瘤归巢干细胞疗法
- 批准号:
10420701 - 财政年份:2022
- 资助金额:
$ 4.14万 - 项目类别:
Harnessing Continuous Liquid Interface 3D Printing to Improve Tumor-homing Stem Cell Therapy for Post-surgical Brain Cancer
利用连续液体界面 3D 打印改善脑癌术后肿瘤归巢干细胞疗法
- 批准号:
10552623 - 财政年份:2022
- 资助金额:
$ 4.14万 - 项目类别:
Bone Regeneration Induced by the Sustained Release of Osteoinductive microRNAs from 3D-printed Constructs
3D 打印结构中持续释放骨诱导性 microRNA 诱导骨再生
- 批准号:
10487443 - 财政年份:2021
- 资助金额:
$ 4.14万 - 项目类别: