Chemical Biology of CFTR Regulation
CFTR 调节的化学生物学
基本信息
- 批准号:10425532
- 负责人:
- 金额:$ 0.25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-15 至 2021-07-21
- 项目状态:已结题
- 来源:
- 关键词:ATP-Binding Cassette TransportersAddressAdenineAffectAffinityAmino AcidsAreaBindingBinding SitesBiologicalBiologyCardiovascular DiseasesChemicalsChemistryChloride ChannelsClinicalCommunicationComplexConsensusCryoelectron MicroscopyCyclic AMP-Dependent Protein KinasesCysteineCystic FibrosisCystic Fibrosis Transmembrane Conductance RegulatorDataDimerizationDiseaseDrug CombinationsEngineeringEnvironmentEvolutionExerciseFutureGoalsHealthHeartHumanIndividualInterferometryIon ChannelIon Channel ProteinKineticsLeadLearningLigand BindingLightLungMammalian CellMeasuresMediatingMembrane ProteinsMethodsMindModelingModernizationMolecularMutateMutationNucleotidesOutcomeOutputPaperPharmacologyPhosphorylationPhysiological ProcessesPhysiologyPlayPositioning AttributeProteinsPublicationsRegulationRoleRouteScholarshipSerineSideSiteStructureTechniquesTestingTherapeuticTimeTrainingWorkanalogbasebiophysical techniquesbiophysical toolscareerclinically relevantdrug discoveryexperimental studyhormone regulationin vivoinsightinterestknock-downmilligrammillisecondmutantprotein structurereceptorrecruitstructural biologytryptophan analogvoltage clamp
项目摘要
SUMMARY
Mutations that render the cystic fibrosis transmembrane conductance regulator (CFTR) defective in function
lead to cystic fibrosis, a devastating multisystem disease affecting tens of thousands of people worldwide.
Drug discovery efforts by Vertex, Inc. (Cambridge, Mass. USA) have yielded clinically efficacious drug
combinations, establishing CFTR as a therapeutically accessible target. Thus far all of the successfully tested
therapies include Ivacaftor, which as a “potentiator,” rather than an activator of CFTR relies at least to some
degree on the phosphorylation state of CFTR, which is subject to dynamic hormonal regulation in vivo. In
addition, accumulating evidence suggests that Ivacaftor works through an ATP-independent mechanism,
meaning that the canonical route by which stable CFTR openings are achieved, namely ATP-driven
dimerization of the intracellular binding domains, is not exploited by Ivacaftor. By aiming to better understand
both phospho regulation and ATP binding in CFTR, the two aims of this proposal are expected to support
future efforts to develop mechanism-based therapies that increase CFTR function. Two scientific aims in my
proposal describe the means to achieve these goals. The first of these aims will use a powerful method we
have developed whereby the phosphorylation state of a specific site in the CFTR channel is controlled by a
brief (<1 second) flash of light. This will allow me to observe the intrinsic phosphorylation rates of the channel,
and the functional consequence, in real time, in a cellular environment. Given that phosphoregulation of ion
channels is well-described in the lung and heart, and often defective in cardiovascular disease, this training
and the anticipated ensuing discoveries will likely lead directly to additional opportunities on other ion channel
proteins with ties to human health. The second aim will examine the interaction chemistry that is utilized
between nucleotide binding domains (NBD) and ATP, their regulatory target. NBDs are ancient domains
(billions of years old) that are found throughout biology, thus advancing their mode of action will simultaneously
impact multiple areas. I will use structural biology and advanced spectroscopic methods to examine the
mechanism of how the soluble NBDs from the CFTR channel bind to their regulatory target, ATP. The likely
common output from these combined efforts will be the publication of multiple high value papers and the
advanced training in modern techniques for the study of ion channel proteins. Additionally, CFTR’s evolution
allows it to serve as a model for both phospho-regulation of ion channels (in common with many other clinically
relevant channels in the lung and heart) and for ATP-based activation of other ABC transporters which play
important roles in lung physiology. Accordingly, execution of this proposal will establish a platform to ask
similarly important questions relating to the regulation of other membrane proteins. As a training exercise, this
endeavor will provide me with a deepened skillset spanning scholarship, scientific communication, and
rigorous, cutting-edge experimentation.
概括
导致囊性纤维化跨膜电导调节因子 (CFTR) 功能缺陷的突变
导致囊性纤维化,这是一种毁灭性的多系统疾病,影响全世界数万人。
Vertex, Inc.(美国马萨诸塞州剑桥)的药物发现工作已经产生了临床有效的药物
组合,将 CFTR 确立为治疗上可及的靶点,迄今为止所有已成功测试的靶点。
疗法包括 Ivacaftor,它作为 CFTR 的“增强剂”而不是 CFTR 的激活剂,至少依赖于某些
CFTR 磷酸化状态的程度,受体内动态激素调节。
此外,越来越多的证据表明 Ivacaftor 通过不依赖 ATP 的机制发挥作用,
意味着实现稳定 CFTR 开口的规范途径,即 ATP 驱动
Ivacaftor 并未利用细胞内结合域的二聚化,旨在更好地理解。
CFTR 中的磷酸调节和 ATP 结合,该提案的两个目标预计将支持
我的两个科学目标是开发基于机制的疗法来增强 CFTR 功能。
提案描述了实现这些目标的手段,我们将使用第一个目标。
因此,CFTR 通道中特定位点的磷酸化状态由
短暂(<1秒)的闪光这将使我能够观察通道的内在磷酸化率,
以及在细胞环境中实时的功能结果。
肺和心脏中的通道被很好地描述,并且在心血管疾病中通常存在缺陷,这种训练
预期的后续发现可能会直接为其他离子通道带来更多机会
第二个目标是研究与人类健康相关的蛋白质。
核苷酸结合域 (NBD) 和 ATP 之间的 NBD 是古老的域。
(数十亿年前)在整个生物学中被发现,因此推进它们的作用方式将同时
我将使用结构生物学和先进的光谱方法来研究影响多个领域。
CFTR 通道中的可溶性 NBD 如何与其调节目标 ATP 结合的机制。
这些共同努力的共同成果将是发表多篇高价值论文和
此外,CFTR 的进化研究现代技术的高级培训。
使其能够作为离子通道磷酸化调节的模型(与许多其他临床应用相同)
肺和心脏中的相关通道)以及基于 ATP 的其他 ABC 转运蛋白的激活
因此,该提案的执行将建立一个询问平台。
与其他膜蛋白的调节相关的同样重要的问题作为训练练习。
努力将为我提供更深入的技能,涵盖学术、科学传播和
严格、前沿的实验。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Real-time observation of functional specialization among phosphorylation sites in CFTR.
实时观察 CFTR 磷酸化位点的功能特化。
- DOI:
- 发表时间:2023-04-03
- 期刊:
- 影响因子:0
- 作者:Infield, Daniel T;Schene, Miranda E;Fazan, Frederico S;Galles, Grace D;Galpin, Jason D;Ahern, Christopher A
- 通讯作者:Ahern, Christopher A
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Daniel T Infield其他文献
Daniel T Infield的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Daniel T Infield', 18)}}的其他基金
相似国自然基金
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Novel mechanism for eNAMPT secretion in PAH vascular remodeling
PAH 血管重塑中 eNAMPT 分泌的新机制
- 批准号:
10677318 - 财政年份:2023
- 资助金额:
$ 0.25万 - 项目类别:
Novel mechanism for eNAMPT secretion in PAH vascular remodeling
PAH 血管重塑中 eNAMPT 分泌的新机制
- 批准号:
10677318 - 财政年份:2023
- 资助金额:
$ 0.25万 - 项目类别: