Optical Control of Protein Activity in Live Cells by Plasmon Assisted Light Inactivation
通过等离激元辅助光灭活对活细胞中蛋白质活性的光学控制
基本信息
- 批准号:10223375
- 负责人:
- 金额:$ 38.25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-08-01 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:AddressBiological AssayBiologyCellsCellular biologyCollaborationsCommunitiesDevelopmentDiagnostic ProcedureG Protein-Coupled Receptor SignalingG-Protein-Coupled ReceptorsGTPase-Activating ProteinsGoalsGoldHeatingInvestigationLaboratory ResearchLasersLightLipidsLocationMeasuresMediatingMembraneMethodsModelingModern MedicineMolecularNeuropeptide ReceptorNeuropeptidesOptical MethodsOpticsOutcomePAR-2 ReceptorPhotosensitivityPhysiologic pulseProcessProtein ConformationProteinsRecording of previous eventsResearchSignal TransductionSpectrum AnalysisStructureSurfaceTechniquesTemperatureTestingTimeWorkbasebiological systemschronic painextracellularinnovationinsightinterestnanonanomaterialsnanometernanoparticlenanosecondnanovesiclenovelplasmonicsprogramsreceptorresponsesuccesstemperature jumptooltrafficking
项目摘要
Abstract
Optical tools have unparalleled spatial and temporal precision and have been instrumental to better understand
various processes in modern medicine and biology. The overall goal of my research laboratory is to
understand the laser-plasmonic nanoparticle interactions and its effects at the interface between biological
systems and nanomaterials. Specifically, experimental techniques and methods have been developed to
understand the effects of nanoparticle plasmonic heating on proteins and lipids immediately next to the
nanoparticle. This has led to new enabling tools for optical protein manipulation and photosensitive
nanovesicles for molecular uncaging, as well as innovative diagnostic methods. This proposed research focus
on the development of optical control of protein activity in live cells, namely plasmon-assisted light inactivation
(PALI). PALI is based on pulsed laser heating (nanosecond) of plasmonic nanoparticles, and its thermally
confined heating to unfold and denature surrounding proteins within a few nanometers of nanoparticle surface.
Thus, PALI also effectively acts a unique nano temperature-jump (T-jump), an innovative experimental platform
to address a gap for protein unfolding investigations. In the next five years, I plan to develop my research
program in these two directions. Firstly, I will focus on developing this new optical tool to manipulate protein
activity in live cells with emphasis on G-protein coupled receptors (GPCR), an important and diverse class of
membrane receptors that mediate extracellular to intracellular signaling. This encompasses a systematic
approach to understand the interaction and trafficking of nanoparticles with GPCR, the cellular responses of
PALI on GPCR signaling, and finally the applicability of PALI on other GPCRs. I will primarily use a specific
GPCR, protease activated receptor 2 (PAR2) that is important for chronic pain, as a working model. To test for
other GPCRs, I will test GPCRs for neuropeptides, which are synergistic with our efforts to create neuropeptide
photosensitive nanovesicles. Secondly, I will concentrate on the characterization of the nano T-jump by
addressing two fundamental questions: (1) can the nanoparticle temperature be directly measured during
pulsed laser heating or after a short delay? (2) How does the protein unfold under nano T-jump? These
involves our existing collaborations with the Argonne National Lab to probe the gold lattice expansion using
advanced spectroscopy, and various structural and functional assays to measure the protein unfolding and
inactivation due to the nano T-jump. By the end of the five years, I anticipate solving important technical
challenges to demonstrate the use of PALI to manipulate protein activity in live cells through GPCRs, and
obtain a clear understanding of the temperature history and protein responses with the innovative nano T-jump
platform. These outcomes would generate interest to the broad research community and enable others to
tackle important challenges in cell biology using PALI.
抽象的
光学工具具有无与伦比的空间和时间精度,有助于更好地理解
现代医学和生物学的各种过程。我的研究实验室的总体目标是
了解激光-等离子体纳米颗粒相互作用及其在生物之间界面的影响
系统和纳米材料。具体来说,已经开发了实验技术和方法
了解纳米粒子等离子体加热对紧邻的蛋白质和脂质的影响
纳米粒子。这催生了用于光学蛋白质操纵和光敏的新工具。
用于分子解笼的纳米囊泡以及创新的诊断方法。本次拟定的研究重点
活细胞中蛋白质活性光学控制的发展,即等离子体辅助光灭活
(巴利语)。 PALI 基于等离子体纳米颗粒的脉冲激光加热(纳秒),其热学特性
有限的加热使纳米颗粒表面几纳米内的周围蛋白质展开和变性。
因此,PALI还有效地发挥了独特的纳米温度跳跃(T-jump)创新实验平台的作用
解决蛋白质展开研究的空白。未来五年,我计划发展我的研究
规划在这两个方向。首先,我将专注于开发这种新的光学工具来操纵蛋白质
活细胞中的活性,重点是 G 蛋白偶联受体 (GPCR),这是一类重要且多样化的受体
介导细胞外到细胞内信号传导的膜受体。这包括一个系统的
方法来了解纳米颗粒与 GPCR 的相互作用和运输、细胞反应
PALI 对 GPCR 信号传导的影响,最后是 PALI 对其他 GPCR 的适用性。我将主要使用特定的
GPCR,蛋白酶激活受体 2 (PAR2),作为工作模型对慢性疼痛很重要。测试
其他 GPCR,我将测试神经肽的 GPCR,这与我们创造神经肽的努力具有协同作用
光敏纳米囊泡。其次,我将重点关注纳米 T 跳跃的表征
解决两个基本问题:(1)可以直接测量纳米颗粒的温度吗?
脉冲激光加热还是短暂延迟后加热? (2)纳米T跳跃下蛋白质如何展开?这些
涉及我们与阿贡国家实验室现有的合作,利用
先进的光谱学以及各种结构和功能测定来测量蛋白质的解折叠和
由于纳米 T 跳跃而失活。到五年结束时,我预计解决重要的技术问题
挑战证明使用 PALI 通过 GPCR 操纵活细胞中的蛋白质活性,以及
通过创新的纳米 T-jump 清晰地了解温度历史和蛋白质反应
平台。这些成果将引起广泛研究界的兴趣,并使其他人能够
使用 PALI 解决细胞生物学中的重要挑战。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Zhenpeng Qin其他文献
Zhenpeng Qin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Zhenpeng Qin', 18)}}的其他基金
Rapid Viral Diagnostic Test by Digital Plasmonic Nanobubbles
利用数字等离子体纳米气泡进行快速病毒诊断测试
- 批准号:
10547200 - 财政年份:2022
- 资助金额:
$ 38.25万 - 项目类别:
Rapid Viral Diagnostic Test by Digital Plasmonic Nanobubbles
利用数字等离子体纳米气泡进行快速病毒诊断测试
- 批准号:
10665073 - 财政年份:2022
- 资助金额:
$ 38.25万 - 项目类别:
Rapid Diagnostic Test for Respiratory Syncytial Virus by Digital Nanobubbles
数字纳米气泡对呼吸道合胞病毒的快速诊断测试
- 批准号:
10394257 - 财政年份:2020
- 资助金额:
$ 38.25万 - 项目类别:
Rapid Diagnostic Test for Respiratory Syncytial Virus by Digital Nanobubbles
数字纳米气泡对呼吸道合胞病毒的快速诊断测试
- 批准号:
10155417 - 财政年份:2020
- 资助金额:
$ 38.25万 - 项目类别:
Rapid Diagnostic Test for Respiratory Syncytial Virus by Digital Nanobubbles
数字纳米气泡对呼吸道合胞病毒的快速诊断测试
- 批准号:
10627753 - 财政年份:2020
- 资助金额:
$ 38.25万 - 项目类别:
Optical Control of Protein Activity in Live Cells by Plasmon Assisted Light Inactivation
通过等离激元辅助光灭活对活细胞中蛋白质活性的光学控制
- 批准号:
10799344 - 财政年份:2019
- 资助金额:
$ 38.25万 - 项目类别:
Optical Control of Protein Activity in Live Cells by Plasmon Assisted Light Inactivation
通过等离激元辅助光灭活对活细胞中蛋白质活性的光学控制
- 批准号:
10698186 - 财政年份:2019
- 资助金额:
$ 38.25万 - 项目类别:
相似国自然基金
基于脑认知网络构建及分子生物学检测的多靶点r-TMS治疗AD效果机制研究
- 批准号:62177004
- 批准年份:2021
- 资助金额:47 万元
- 项目类别:面上项目
基于miRNA-mRNA-protein多生物学指标检测模式构建皮肤损伤时间推断体系的研究
- 批准号:81871529
- 批准年份:2018
- 资助金额:58.0 万元
- 项目类别:面上项目
基于功能化碳材料的脑内神经活性物质电化学检测新方法的研究
- 批准号:21778047
- 批准年份:2017
- 资助金额:64.0 万元
- 项目类别:面上项目
新型O-乙酰葡糖胺-6-磷酸蛋白糖基化的检测、过程机理及生物功能研究
- 批准号:21778035
- 批准年份:2017
- 资助金额:65.0 万元
- 项目类别:面上项目
基于简化基因组测序GBS黄翅大白蚁种群进化研究
- 批准号:31760543
- 批准年份:2017
- 资助金额:38.0 万元
- 项目类别:地区科学基金项目
相似海外基金
Next Generation Opto-GPCRs for Neuromodulatory Control
用于神经调节控制的下一代 Opto-GPCR
- 批准号:
10515612 - 财政年份:2023
- 资助金额:
$ 38.25万 - 项目类别:
Developing Autophagy-Targeting Chimeras and Optimizing Cell Penetration of Large-Molecule Therapeutics
开发自噬靶向嵌合体并优化大分子治疗的细胞渗透
- 批准号:
10558145 - 财政年份:2023
- 资助金额:
$ 38.25万 - 项目类别:
Investigate the utility of APLP1 as an endosomal biomarker for Alzheimer's Disease in Down Syndrome
研究 APLP1 作为唐氏综合症阿尔茨海默氏病内体生物标志物的效用
- 批准号:
10727134 - 财政年份:2023
- 资助金额:
$ 38.25万 - 项目类别:
Pilot Studies of PAX3-FOXO1 Fusions Proteins in Alveolar Rhabdomyosarcoma
PAX3-FOXO1 融合蛋白在肺泡横纹肌肉瘤中的初步研究
- 批准号:
10726763 - 财政年份:2023
- 资助金额:
$ 38.25万 - 项目类别: