Structure-based functional annotation of microbial genomes
微生物基因组基于结构的功能注释
基本信息
- 批准号:10216988
- 负责人:
- 金额:$ 71.59万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-08-01 至 2022-07-31
- 项目状态:已结题
- 来源:
- 关键词:AcuteAddressAlgorithmsAmino Acid SequenceAnimal ModelAttentionAutomated AnnotationBacteriaBacterial GenomeBacterial PhysiologyBase SequenceBindingBinding ProteinsBinding SitesBiochemicalBiochemical GeneticsBioinformaticsBiological ProcessBiologyChemicalsCommunitiesComputational BiologyConsensusDataDatabasesDetectionDevelopmentDiseaseDistantEnzymesEscherichia coliEscherichia coli K12Escherichia coli ProteinsExperimental DesignsExplosionFeedbackGenesGenomeGenomicsGoalsHealthHigh-Throughput Nucleotide SequencingHumanInvestigationLaboratoriesLigand BindingLow PrevalenceMethodsMicrobiologyModelingModernizationMolecular BiologyNucleic Acid Sequence HomologyOntologyOrganismPathogenicityPathway interactionsPatternPerformancePhysiologyPlayProtein RegionProteinsProteomeProtocols documentationRecording of previous eventsResistanceResolutionResourcesRoleSequence HomologyStressStructural ModelsStructureSystems BiologyTaxonomyTestingTimeValidationbasebiological adaptation to stressblindcomputational pipelinesdesigndrug discoveryexperimental studyfollow-upgenome annotationgenome databasegenome wide screengenome-wideimprovedindexinginsightknockout genemethod developmentmicrobialmicrobial genomenovelnovel therapeuticsprotein foldingprotein functionprotein protein interactionprotein structureprotein structure predictionscreeningsmall moleculestructural biologysuccesssynergismthree dimensional structuretranscription factor
项目摘要
Abstract
Given the recent explosion in the number of sequenced genomes and the relative lack of functional information
on their contents, annotating the biological functions of all proteins across different genomes represents a major
challenge to modern molecular and computational biology. The problem of genome annotation is particularly
acute for bacteria; a vast range of commensal and pathogenic bacterial species impact human health, and only
computational approaches, when appropriately combined with carefully targeted biochemical experiments, can
provide the reliable, high-throughput annotations necessary to understand their physiology. The current
approach to computational function prediction is mainly based on transfer from known proteins of similar
sequence, which however becomes increasingly unreliable when the homology level is low. Recently, significant
progress has been achieved in protein 3D structure prediction as witnessed by the community-wide blind testing
experiments, and current state of the art methods can construct correct protein folds for the majority of genome
sequences without using close homologous templates. Building on the hypothesis that biological function is more
directly associated with 3D structure than sequence, this proposal aims to initiate a paradigm shift from protein
structure prediction to structure-based function annotations. Combining expertise from computational biology,
microbiology, and structural biology, the PIs will systemically examine the potential and scope of how
computational structure models from cutting-edge modeling methods can help provide reliable high-throughput
annotations of bacterial genomes, with a particular focus on the difficult targets that cannot be addressed by the
existing sequence homology-based approaches.
This project is designed to develop and test several cutting-edge approaches for protein function prediction using
low-resolution (but correctly folded) models from the structure predictions. The specific aims include the
development of novel structure-based methods for modeling of the protein-ligand binding sites, and enzyme and
gene ontologies. The modeling methods and results will be tested by a set of carefully designed experiments,
including high-throughput chemical screening and detailed structural-biology based characterizations. At all
stages, iterative prediction-to-experiment-to-refinement loops will be established between the experiments and
computational annotations to guide the functional modeling method development and advances. The studies of
this project will be focused on E. coli K12 strain, for which >10% of the genome remains un-annotated despite a
long history of use as a model organism; but the long-term goal is to build up a novel and robust framework
which can be used as a resource for reliable function annotations for various other microbial genomes. Compared
with current sequence-based approaches, the success of the structure-based pipelines could potentially convert
nearly 10 million (or 30%) of the non- or distant-homologous targets in the current genome database into the
reliable function annotation regime.
抽象的
鉴于最近测序基因组数量的爆炸性增长以及功能信息的相对缺乏
就其内容而言,注释不同基因组中所有蛋白质的生物学功能代表了一个主要的
对现代分子和计算生物学的挑战。基因组注释的问题尤为突出
对细菌很敏感;大量的共生菌和致病菌会影响人类健康,并且只有
计算方法,当与仔细有针对性的生化实验适当结合时,可以
提供了解其生理学所需的可靠、高通量注释。目前的
计算功能预测的方法主要基于从相似的已知蛋白质的转移
然而,当同源性水平较低时,该序列变得越来越不可靠。近期,重大
全社区盲测见证蛋白质3D结构预测取得进展
实验和当前最先进的方法可以为大多数基因组构建正确的蛋白质折叠
序列而不使用紧密的同源模板。建立在生物功能更重要的假设之上
与 3D 结构而不是序列直接相关,该提案旨在启动蛋白质的范式转变
结构预测到基于结构的功能注释。结合计算生物学的专业知识,
微生物学和结构生物学,PI 将系统地研究如何进行的潜力和范围
来自尖端建模方法的计算结构模型可以帮助提供可靠的高通量
细菌基因组注释,特别关注细菌基因组无法解决的困难目标
现有的基于序列同源性的方法。
该项目旨在开发和测试几种用于蛋白质功能预测的前沿方法,使用
来自结构预测的低分辨率(但正确折叠)模型。具体目标包括
开发基于结构的新型方法来建模蛋白质-配体结合位点以及酶和
基因本体论。建模方法和结果将通过一组精心设计的实验进行检验,
包括高通量化学筛选和详细的基于结构生物学的表征。根本
阶段,将在实验和实验之间建立迭代预测-实验-细化循环
计算注释指导功能建模方法的发展和进步。的研究
该项目将重点关注大肠杆菌 K12 菌株,尽管其基因组的 10% 以上仍未注释
作为模式生物的悠久历史;但长期目标是建立一个新颖而强大的框架
它可以用作各种其他微生物基因组的可靠功能注释的资源。比较的
通过当前基于序列的方法,基于结构的管道的成功可能会转化为
将当前基因组数据库中近 1000 万(或 30%)的非同源或远距离同源目标导入到
可靠的函数注释机制。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lydia Freddolino其他文献
Lydia Freddolino的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lydia Freddolino', 18)}}的其他基金
Bacteriophage Mu as Tool to Study Genome Organization in Bacteria and Eukaryotes
噬菌体 Mu 作为研究细菌和真核生物基因组组织的工具
- 批准号:
10265837 - 财政年份:2021
- 资助金额:
$ 71.59万 - 项目类别:
Building a unified framework for understanding bacterial gene regulation and chromosomal architecture
建立理解细菌基因调控和染色体结构的统一框架
- 批准号:
10440347 - 财政年份:2018
- 资助金额:
$ 71.59万 - 项目类别:
Structure-based functional annotation of microbial genomes
微生物基因组基于结构的功能注释
- 批准号:
10674978 - 财政年份:2018
- 资助金额:
$ 71.59万 - 项目类别:
Building a unified framework for understanding bacterial gene regulation and chromosomal architecture
建立理解细菌基因调控和染色体结构的统一框架
- 批准号:
9980452 - 财政年份:2018
- 资助金额:
$ 71.59万 - 项目类别:
Building a unified framework for understanding bacterial gene regulation and chromosomal architecture
建立理解细菌基因调控和染色体结构的统一框架
- 批准号:
9892610 - 财政年份:2018
- 资助金额:
$ 71.59万 - 项目类别:
Building a unified framework for understanding bacterial gene regulation and chromosomal architecture
建立理解细菌基因调控和染色体结构的统一框架
- 批准号:
10622670 - 财政年份:2018
- 资助金额:
$ 71.59万 - 项目类别:
Structure-based functional annotation of microbial genomes
微生物基因组基于结构的功能注释
- 批准号:
10535650 - 财政年份:2018
- 资助金额:
$ 71.59万 - 项目类别:
Building a unified framework for understanding bacterial gene regulation and chromosomal architecture
建立理解细菌基因调控和染色体结构的统一框架
- 批准号:
10225420 - 财政年份:2018
- 资助金额:
$ 71.59万 - 项目类别:
Genome-wide measurement of bacterial transcriptional regulatory states
细菌转录调控状态的全基因组测量
- 批准号:
9008046 - 财政年份:2013
- 资助金额:
$ 71.59万 - 项目类别:
Genome-wide measurement of bacterial transcriptional regulatory states
细菌转录调控状态的全基因组测量
- 批准号:
8735166 - 财政年份:2013
- 资助金额:
$ 71.59万 - 项目类别:
相似国自然基金
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Optimizing the Diagnostic Strategy for Acute Musculoskeletal Infections in Children: Evaluating the Clinical Performance and Comparative Cost of a Noninvasive Diagnostic Technique
优化儿童急性肌肉骨骼感染的诊断策略:评估无创诊断技术的临床表现和比较成本
- 批准号:
10664298 - 财政年份:2023
- 资助金额:
$ 71.59万 - 项目类别:
SCH: Artificial Intelligence enabled multi-modal sensor platform for at-home health monitoring of patients
SCH:人工智能支持的多模式传感器平台,用于患者的家庭健康监测
- 批准号:
10816667 - 财政年份:2023
- 资助金额:
$ 71.59万 - 项目类别:
A Novel VpreB1 Anti-body Drug Conjugate for the Treatment of B-Lineage Acute Lymphoblastic Leukemia/Lymphoma
一种用于治疗 B 系急性淋巴细胞白血病/淋巴瘤的新型 VpreB1 抗体药物偶联物
- 批准号:
10651082 - 财政年份:2023
- 资助金额:
$ 71.59万 - 项目类别:
Development of a regional anesthesia guidance system to increase patient access to opioid-sparing analgesia for hip fracture pain
开发区域麻醉引导系统,以增加患者获得髋部骨折疼痛的阿片类药物保留镇痛的机会
- 批准号:
10759550 - 财政年份:2023
- 资助金额:
$ 71.59万 - 项目类别:
Traumatic Brain Injury Anti-Seizure Prophylaxis in the Medicare Program
医疗保险计划中的创伤性脑损伤抗癫痫预防
- 批准号:
10715238 - 财政年份:2023
- 资助金额:
$ 71.59万 - 项目类别: