Genome-wide measurement of bacterial transcriptional regulatory states
细菌转录调控状态的全基因组测量
基本信息
- 批准号:9008046
- 负责人:
- 金额:$ 24.89万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-09-20 至 2018-01-31
- 项目状态:已结题
- 来源:
- 关键词:AntibioticsAwardBacteriaBacterial GenomeBehaviorBindingBinding SitesBiologyCarbonCell CommunicationCellsChloroformCommunitiesComplexComputing MethodologiesDNADNA BindingDNA-Binding ProteinsDNase I hypersensitive sites sequencingDataDetectionDevelopmentDirected Molecular EvolutionEnvironmentEnvironmental HazardsEscherichia coliEukaryotaEvaluationEvolutionExclusionGene ExpressionGene Expression ProfileGene Expression RegulationGenesGeneticGenetic TranscriptionGenomeGenomicsGoalsGrantHeartHigh-Throughput Nucleotide SequencingHousekeepingHumanIndividualInterphaseKnowledgeLifeLinkLocationLogicMapsMeasurementMeasuresMentorsMessenger RNAMethodsMicrobeModelingMolecular ModelsMutationOrganismOutputPhasePhenolsPhenotypePhysiologicalPlayPopulationProcessProteinsProteomicsRegulatory ElementResearchResistanceResolutionRoleSignal TransductionSiteSourceStagingStatistical ModelsStimulusSystems BiologyTechnologyTestingTimeTissue DifferentiationTranscriptional RegulationValidationVertebral columnWorkabstractingantimicrobial drugaqueousbasechromatin immunoprecipitationcomputer frameworkcomputerized data processingcomputerized toolscrosslinkdensitydrug developmentextracellularfollow-upgenetic regulatory proteingenome-wideimprovedinformation gatheringinsightmetabolomicsmicrobial communitymolecular modelingnovelpredicting responsepreferenceprogramsrapid techniqueresearch studyresistance mechanismresponserhotermination factortooltranscription factorultraviolet irradiation
项目摘要
Abstract
The regulation of gene expression plays a pivotal role in all aspects of biology, from the manner in which bacteria
respond to their environment to the differentiation of tissues in higher eukaryotes. In the era of genomics,
proteomics, and metabolomics, however, biologists are still bereft of a generally applicable method for rapid
determination of the regulatory logic underlying the pattern of gene expression in a cell under a given set
of conditions. This logic arises in large part from the binding of transcription factors (TFs) which can either
repress or activate expression of nearby genes. The K99/R00 project proposed here aims to contribute a
method, termed IPODHR, for obtaining a genome-wide snapshot of the transcriptional regulatory state of the
cell, by providing the locations and identities of all transcription factors bound to the genome under physiological
conditions. Understanding and quantitatively modeling the regulatory networks of bacterial cells is crucial both
for the successful development of new antibiotics, and for the rational manipulation of microbial communities
such as that in the human gut.
IPODHR is superficially similar to chromatin immunoprecipitation (ChIP) experiments, but instead of isolat-
ing a single protein (and any DNA bound to it), IPODHR isolates all protein-DNA complexes from crosslinked
lysates, using the fact that these complexes partition to the organic-aqueous interphase during phenol-chloroform
extraction. High throughput sequencing is used to reveal the locations of DNA-bound TFs. The resulting sig-
nal, representing overall protein occupancy throughout the genome, is then split during data processing into
contributions from different TFs and other DNA binding proteins, using a computational method that is currently
under development. Thus, unlike ChIP, only one experiment is required to study the entire regulatory state of
the cell under a given condition, and prior knowledge of the relevant TFs is not required.
At present, my ongoing research (including plans for the mentored phase of the award) is focused on
completing the experimental and computational aspects of the IPODHR framework. For the experimental com-
ponent, only small refinements appear necessary to improve spatial resolution further; validation experiments
and pilot applications will then be performed to confirm the sensitivity and specificity of the method to changing
physiological conditions. The computational methods required for partitioning the IPODHR binding profile are
also under active development, using a statistical model to assign peaks in the IPODHR density to particular
factors. In the process of these development and validation experiments, follow-ups will target TF binding sites
and specificities inferred from IPODHR data but not yet characterized in detail, further expanding our knowledge
of the E. coli transcriptional regulatory network by revealing new TFs and interactions. Successful completion
and application of IPODHR will provide the community with a transformative new tool to measure the transcrip-
tional regulatory logic of bacteria without detailed prior knowledge of the transcription factors involved.
Research planned for the independent phase will focus on the use of IPODHR, alongside other established
methods in bacterial systems biology, to obtain a complete understanding of how rewiring transcriptional net-
works can allow cells to adapt to novel conditions without the acquisition of new enzymatic capacities. I will
focus initially on a previously discovered mutation of the termination factor Rho that improves cellular fitness
under a variety of conditions, and appears to be representative of a broad class of mutations to housekeep-
ing proteins that occur in evolving bacterial populations. IPODHR will allow measurement of the changes in
transcriptional logic giving rise to previously observed adaptive outputs, and thus provide insight into the ex-
act mechanisms through which the perturbations under study alter TF behavior to give rise to the observed
changes in phenotype. As the rho mutation in question renders cells somewhat resistant to several classes of
antibiotics, it will be particularly useful to compare the mechanisms of this resistance with other known paths
to antibiotic tolerance.
If progress on the proposed aims is sufficiently rapid, near the end of the grant period adaptation of IPODHR
for use in bacteria other than E. coli may also begin. The massive scope of information provided by the method,
and lack of any need for specific prior knowledge or manipulation of the target organism, mean that IPODHR
has the promise to provide a huge advance in the understanding of transcriptional regulation in poorly studied
microbes. These applications of IPODHR will form the backbone of an R01 proposal to be prepared during the
late stages of the independent R00 phase.
抽象的
基因表达的调控在生物学的各个方面都发挥着关键作用,从细菌的表达方式到
在基因组学时代,它们的环境对高等真核生物的组织分化做出反应。
然而,生物学家仍然缺乏一种普遍适用的快速分析方法
确定给定组下细胞中基因表达模式的调控逻辑
这种逻辑在很大程度上源于转录因子(TF)的结合,转录因子可以
这里提出的 K99/R00 项目旨在抑制或激活附近基因的表达。
称为IPODHR的方法,用于获得转录调控状态的全基因组快照
细胞,通过提供生理条件下与基因组结合的所有转录因子的位置和身份
了解细菌细胞的调节网络并对其进行定量建模至关重要。
成功开发新抗生素,合理调控微生物群落
就像人类肠道中的那样。
IPODHR 表面上类似于染色质免疫沉淀 (ChIP) 实验,但不是分离的
通过单个蛋白质(以及与其结合的任何 DNA),IPODHR 可将所有蛋白质-DNA 复合物从交联中分离出来
裂解物,利用这些复合物在苯酚-氯仿过程中分配到有机-水相间的事实
高通量测序用于揭示 DNA 结合 TF 的位置。
nal 代表整个基因组中蛋白质的总体占用率,然后在数据处理过程中分为
来自不同 TF 和其他 DNA 结合蛋白的贡献,使用目前的计算方法
因此,与 ChIP 不同,只需一项实验即可研究整个调控状态。
给定条件下的单元格,并且不需要相关 TF 的先验知识。
目前,我正在进行的研究(包括该奖项的指导阶段的计划)主要集中在
完成IPODHR框架的实验和计算方面的实验。
观点认为,只需进行小的改进即可进一步提高验证实验;
然后将进行试点应用,以确认该方法对变化的敏感性和特异性
划分IPODHR 结合谱所需的计算方法是
也在积极开发中,使用统计模型将 IPODHR 密度的峰值分配给特定的
在这些开发和验证实验的过程中,后续将针对 TF 结合位点。
以及从 IPODHR 数据推断但尚未详细表征的特异性,进一步扩展了我们的知识
通过揭示新的 TF 和相互作用,成功完成了大肠杆菌转录调控网络的研究。
IPODHR 的应用将为社区提供一种变革性的新工具来衡量成绩单
在没有详细了解所涉及的转录因子的情况下,研究细菌的调节逻辑。
独立阶段计划的研究将重点关注 IPODHR 以及其他已建立的项目的使用
细菌系统生物学中的方法,以获得对如何重新布线转录网络的完整理解
我会的工作可以让细胞适应新的条件,而无需获得新的酶能力。
首先关注先前发现的终止因子 Rho 的突变,该突变可改善细胞健康
在各种条件下,并且似乎代表了一大类管家突变
分析发生在进化的细菌群体中的蛋白质将允许测量变化。
转录逻辑产生先前观察到的适应性输出,从而提供对前
研究中的扰动改变 TF 行为以产生观察到的行为机制
表型的变化,因为所讨论的 rho 突变使细胞对几类病毒有一定的抵抗力。
抗生素,将这种耐药机制与其他已知途径进行比较特别有用
对抗生素的耐受性。
如果拟议目标的进展足够快,则在 IPODHR 的资助期即将结束时进行调整
该方法也可以开始用于大肠杆菌以外的细菌,
并且不需要任何特定的先验知识或对目标生物体的操作,意味着IPODHR
有希望为人们对研究不足的转录调控的理解提供巨大的进步
IPODHR 的这些应用将构成 R01 提案的支柱。
独立R00阶段的后期阶段。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lydia Freddolino其他文献
Lydia Freddolino的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lydia Freddolino', 18)}}的其他基金
Bacteriophage Mu as Tool to Study Genome Organization in Bacteria and Eukaryotes
噬菌体 Mu 作为研究细菌和真核生物基因组组织的工具
- 批准号:
10265837 - 财政年份:2021
- 资助金额:
$ 24.89万 - 项目类别:
Building a unified framework for understanding bacterial gene regulation and chromosomal architecture
建立理解细菌基因调控和染色体结构的统一框架
- 批准号:
10440347 - 财政年份:2018
- 资助金额:
$ 24.89万 - 项目类别:
Structure-based functional annotation of microbial genomes
微生物基因组基于结构的功能注释
- 批准号:
10674978 - 财政年份:2018
- 资助金额:
$ 24.89万 - 项目类别:
Building a unified framework for understanding bacterial gene regulation and chromosomal architecture
建立理解细菌基因调控和染色体结构的统一框架
- 批准号:
9892610 - 财政年份:2018
- 资助金额:
$ 24.89万 - 项目类别:
Building a unified framework for understanding bacterial gene regulation and chromosomal architecture
建立理解细菌基因调控和染色体结构的统一框架
- 批准号:
9980452 - 财政年份:2018
- 资助金额:
$ 24.89万 - 项目类别:
Building a unified framework for understanding bacterial gene regulation and chromosomal architecture
建立理解细菌基因调控和染色体结构的统一框架
- 批准号:
10622670 - 财政年份:2018
- 资助金额:
$ 24.89万 - 项目类别:
Structure-based functional annotation of microbial genomes
微生物基因组基于结构的功能注释
- 批准号:
10535650 - 财政年份:2018
- 资助金额:
$ 24.89万 - 项目类别:
Structure-based functional annotation of microbial genomes
微生物基因组基于结构的功能注释
- 批准号:
10216988 - 财政年份:2018
- 资助金额:
$ 24.89万 - 项目类别:
Building a unified framework for understanding bacterial gene regulation and chromosomal architecture
建立理解细菌基因调控和染色体结构的统一框架
- 批准号:
10225420 - 财政年份:2018
- 资助金额:
$ 24.89万 - 项目类别:
Genome-wide measurement of bacterial transcriptional regulatory states
细菌转录调控状态的全基因组测量
- 批准号:
8735166 - 财政年份:2013
- 资助金额:
$ 24.89万 - 项目类别:
相似国自然基金
草原生态补奖政策对牧户兼业行为的影响机理研究——以内蒙古为例
- 批准号:72363025
- 批准年份:2023
- 资助金额:28 万元
- 项目类别:地区科学基金项目
生态补奖背景下草原牧户实现自主性减畜的机制、路径和政策研究
- 批准号:72374130
- 批准年份:2023
- 资助金额:41 万元
- 项目类别:面上项目
草原生态补奖政策对牧民调整草场经营行为的影响研究:作用机理、实证分析与政策优化
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
草原生态补奖政策激励-约束下牧民生产行为决策机制及生态效应
- 批准号:
- 批准年份:2020
- 资助金额:50 万元
- 项目类别:
华罗庚数学奖获得者座谈会及数学普及活动
- 批准号:11926407
- 批准年份:2019
- 资助金额:20.0 万元
- 项目类别:数学天元基金项目
相似海外基金
Using strain history to improve prediction of the evolution of antimicrobial resistance in Acinetobacter baumannii
利用菌株历史改进对鲍曼不动杆菌抗菌药物耐药性演变的预测
- 批准号:
10677362 - 财政年份:2023
- 资助金额:
$ 24.89万 - 项目类别:
Characterizing the preterm infant skin microbiome and microbial shifts that precede neonatal late onset sepsis (LOS)
描述早产儿皮肤微生物组的特征以及新生儿迟发性败血症 (LOS) 之前的微生物变化
- 批准号:
10664071 - 财政年份:2023
- 资助金额:
$ 24.89万 - 项目类别:
Leveraging evolutionary analyses and machine learning to discover multiscale molecular features associated with antibiotic resistance
利用进化分析和机器学习发现与抗生素耐药性相关的多尺度分子特征
- 批准号:
10658686 - 财政年份:2023
- 资助金额:
$ 24.89万 - 项目类别:
Bacterial ribosome heterogeneity and gene expression
细菌核糖体异质性和基因表达
- 批准号:
10713812 - 财政年份:2023
- 资助金额:
$ 24.89万 - 项目类别:
Pyocins as antibacterials to treat Pseudomonas aeruginosa infections
脓毒素作为抗菌药物治疗铜绿假单胞菌感染
- 批准号:
10727705 - 财政年份:2023
- 资助金额:
$ 24.89万 - 项目类别: