Structure-based functional annotation of microbial genomes
微生物基因组基于结构的功能注释
基本信息
- 批准号:10674978
- 负责人:
- 金额:$ 74.66万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-08-01 至 2027-07-31
- 项目状态:未结题
- 来源:
- 关键词:AcuteAmino Acid SequenceAttentionBackBacteriaBacterial GenomeBacterial ProteinsBehaviorBinding SitesBiochemicalBiochemistryBiologicalBiological MarkersBiological ModelsBiologyCommunitiesComputing MethodologiesCrystallographyDataDatabasesDevelopmentDiseaseDrug DesignEscherichia coliEscherichia coli K12Escherichia coli ProteinsExperimental GeneticsFailureFeedbackFollow-Up StudiesFutureGenesGeneticGenomeHigh-Throughput Nucleotide SequencingHomologous GeneHospitalizationHumanHuman ResourcesIn VitroInterventionKnowledgeLaboratoriesLibrariesLigandsMethodsMicrobeModernizationMycoplasmaNetwork-basedOntologyOrganismPathogenesisPerformancePharmacologic SubstancePhysiologicalPhysiologyProtein Structure DatabasesProteinsProteomePublic HealthResearchResolutionRoleSequence HomologySet proteinStructureTechnologyTestingTranslatingUnited StatesUrinary tract infectionUropathogenic E. coliVirulenceVirulence FactorsVirusWorkX-Ray Crystallographybacterial geneticsbiological systemsclinically relevantcofactorcomputerized toolsdeep learningexperimental studygenome-widehost colonizationhuman pathogenimprovedin vivoinnovationinsightinterestmethod developmentmicrobial genomemouse modelneural networknext generationnoveloverexpressionpathogenic bacteriapathogenic microbepredictive modelingprotein foldingprotein functionprotein protein interactionprotein purificationprotein structureprotein structure predictionpublic databasetherapeutic targettoolvirulence gene
项目摘要
Abstract
One of the most pressing challenges in modern biology is that of translating the massive amounts of
information on biological sequences that has been made available by recent advances in sequencing
technologies, into corresponding insights into the behavior of biological systems. Determining the functions and
physiological roles of proteins remains a major component of this challenge; for many species, especially
non-model microbes such as microbial pathogens, the fraction of the proteome consisting of poorly annotated
proteins may approach 50%, severely limiting our ability to even identify mechanisms of pathogenesis and
potential therapeutic targets. The massive number of poorly annotated proteins of potential biological
importance necessitates the ongoing development of efficient and reliable computational approaches for
functional annotation of proteins. Over the past few years, we have developed and applied several new
workflows for whole-proteome structure prediction and functional annotation of bacterial genomes, with
applications to laboratory strain E. coli K12 and to the minimal genome mycoplasma JCVI-syn3.0. Our
workflows are distinguished by the integration of structural information (including high-accuracy protein
structure prediction) in functional annotations, alongside classical methods such as sequence homology and
syntenty, and recent developments such as the inclusion of deep-learning based predictors; we find that
collectively, our workflows provide highly accurate functional annotations that are especially useful for ‘difficult’
protein targets without clear annotated homologs. We will now shift our focus to applying our tools to the
proteomes of bacterial pathogens, with an initial emphasis on uropathogenic E. coli. Specifically, we will
continue to develop our structure/function prediction capabilities to further improve accuracy and increase the
richness of information delivered (Aim 1), perform prediction-guided biochemical characterization of likely
virulence genes to assess predictive performance and identify potential pharmaceutical targets (Aim 2), obtain
experimental structures for proteins that are identified as difficult structural targets which likely represent novel
folds or unusual sequences for known folds (Aim 3), and test the physiological importance of likely
newly-identified virulence factors in an in vivo mouse model (Aim 4). The experimental data gathered under
Aims 2-4 will be continuously integrated with the ongoing methods development under Aim 1 to maximize the
performance and utility of the developed tools. The results of this project will include further improvements to
widely used and cited tools for rapid structure/function prediction, identification of specific virulence
determinants in uropathogenic E. coli and preliminary insights into how they may be targeted for
pharmaceutical intervention, and additional structural data of potential virulence factors that will aid in
structure-based drug design and improve coverage of existing structural template libraries to guide future
protein structure and function prediction.
抽象的
现代生物学最紧迫的挑战之一是翻译大量的
通过测序的最新进展提供的生物序列信息
技术,深入了解生物系统的功能和行为。
蛋白质的生理作用仍然是这一挑战的主要组成部分,对于许多物种来说尤其如此。
非模型微生物,例如微生物病原体,蛋白质组中由注释不良的部分组成
蛋白质可能接近 50%,严重限制了我们识别发病机制和机制的能力
潜在的生物治疗靶点的大量注释不明确的蛋白质。
重要性需要不断开发高效可靠的计算方法
在过去的几年里,我们开发并应用了一些新的蛋白质功能注释。
用于细菌基因组的全蛋白质组结构预测和功能注释的工作流程,
应用到实验室菌株大肠杆菌 K12 和最小基因组支原体 JCVI-syn3.0。
工作流程的特点是结构信息的整合(包括高精度蛋白质
结构预测)在功能注释中,与经典方法(例如序列同源性和
syntenty,以及最近的发展,例如包含基于深度学习的预测器;
总的来说,我们的工作流程提供了高度准确的功能注释,这对于“困难”的情况特别有用
没有明确注释的同系物的蛋白质靶点,我们现在将重点转移到将我们的工具应用于
细菌病原体的蛋白质组,首先重点关注尿路致病性大肠杆菌。
继续发展我们的结构/功能预测能力,以进一步提高准确性并增加
提供的信息丰富(目标 1),执行预测引导的可能的生化表征
毒力基因,用于评估预测性能并识别潜在的药物靶点(目标 2),获得
蛋白质的实验结构被确定为困难的结构目标,可能代表新的
折叠或已知折叠的异常序列(目标 3),并测试可能的生理重要性
在体内小鼠模型中新发现的毒力因子(目标 4)下收集的实验数据。
目标 2-4 将不断与目标 1 下正在进行的方法开发相结合,以最大限度地提高
该项目的结果将包括对所开发工具的性能和实用性的进一步改进。
广泛使用和引用的工具,用于快速结构/功能预测、特定毒力的识别
泌尿道致病性大肠杆菌的决定因素以及对其如何靶向的初步见解
药物干预以及潜在毒力因子的其他结构数据将有助于
基于结构的药物设计并提高现有结构模板库的覆盖范围以指导未来
蛋白质结构和功能预测。
项目成果
期刊论文数量(46)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
LOMETS2: improved meta-threading server for fold-recognition and structure-based function annotation for distant-homology proteins.
LOMETS2:改进的元线程服务器,用于远距离同源蛋白的折叠识别和基于结构的功能注释。
- DOI:
- 发表时间:2019
- 期刊:
- 影响因子:14.9
- 作者:Zheng, Wei;Zhang, Chengxin;Wuyun, Qiqige;Pearce, Robin;Li, Yang;Zhang, Yang
- 通讯作者:Zhang, Yang
Protein structure and sequence re-analysis of 2019-nCoV genome does not indicate snakes as its intermediate host or the unique similarity between its spike protein insertions and HIV-1.
对 2019-nCoV 基因组的蛋白质结构和序列重新分析并没有表明蛇是其中间宿主,也没有表明其刺突蛋白插入与 HIV-1 之间存在独特的相似性。
- DOI:
- 发表时间:2020-02-08
- 期刊:
- 影响因子:0
- 作者:Zhang, Chengxin;Zheng, Wei;Huang, Xiaoqiang;Bell, Eric W;Zhou, Xiaogen;Zhang, Yang
- 通讯作者:Zhang, Yang
BioLiP2: an updated structure database for biologically relevant ligand-protein interactions.
BioLiP2:生物学相关配体-蛋白质相互作用的更新结构数据库。
- DOI:
- 发表时间:2024-01-05
- 期刊:
- 影响因子:14.9
- 作者:Zhang, Chengxin;Zhang, Xi;Freddolino, Peter L;Zhang, Yang
- 通讯作者:Zhang, Yang
De novo design of protein peptides to block association of the SARS-CoV-2 spike protein with human ACE2.
从头设计蛋白肽以阻断 SARS-CoV-2 刺突蛋白与人 ACE2 的关联。
- DOI:
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Huang, Xiaoqiang;Pearce, Robin;Zhang, Yang
- 通讯作者:Zhang, Yang
Progressive assembly of multi-domain protein structures from cryo-EM density maps.
从冷冻电镜密度图逐步组装多域蛋白质结构。
- DOI:
- 发表时间:2022-04
- 期刊:
- 影响因子:0
- 作者:Zhou, Xiaogen;Li, Yang;Zhang, Chengxin;Zheng, Wei;Zhang, Guijun;Zhang, Yang
- 通讯作者:Zhang, Yang
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lydia Freddolino其他文献
Lydia Freddolino的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lydia Freddolino', 18)}}的其他基金
Bacteriophage Mu as Tool to Study Genome Organization in Bacteria and Eukaryotes
噬菌体 Mu 作为研究细菌和真核生物基因组组织的工具
- 批准号:
10265837 - 财政年份:2021
- 资助金额:
$ 74.66万 - 项目类别:
Building a unified framework for understanding bacterial gene regulation and chromosomal architecture
建立理解细菌基因调控和染色体结构的统一框架
- 批准号:
10440347 - 财政年份:2018
- 资助金额:
$ 74.66万 - 项目类别:
Building a unified framework for understanding bacterial gene regulation and chromosomal architecture
建立理解细菌基因调控和染色体结构的统一框架
- 批准号:
9980452 - 财政年份:2018
- 资助金额:
$ 74.66万 - 项目类别:
Building a unified framework for understanding bacterial gene regulation and chromosomal architecture
建立理解细菌基因调控和染色体结构的统一框架
- 批准号:
9892610 - 财政年份:2018
- 资助金额:
$ 74.66万 - 项目类别:
Building a unified framework for understanding bacterial gene regulation and chromosomal architecture
建立理解细菌基因调控和染色体结构的统一框架
- 批准号:
10622670 - 财政年份:2018
- 资助金额:
$ 74.66万 - 项目类别:
Structure-based functional annotation of microbial genomes
微生物基因组基于结构的功能注释
- 批准号:
10535650 - 财政年份:2018
- 资助金额:
$ 74.66万 - 项目类别:
Structure-based functional annotation of microbial genomes
微生物基因组基于结构的功能注释
- 批准号:
10216988 - 财政年份:2018
- 资助金额:
$ 74.66万 - 项目类别:
Building a unified framework for understanding bacterial gene regulation and chromosomal architecture
建立理解细菌基因调控和染色体结构的统一框架
- 批准号:
10225420 - 财政年份:2018
- 资助金额:
$ 74.66万 - 项目类别:
Genome-wide measurement of bacterial transcriptional regulatory states
细菌转录调控状态的全基因组测量
- 批准号:
9008046 - 财政年份:2013
- 资助金额:
$ 74.66万 - 项目类别:
Genome-wide measurement of bacterial transcriptional regulatory states
细菌转录调控状态的全基因组测量
- 批准号:
8735166 - 财政年份:2013
- 资助金额:
$ 74.66万 - 项目类别:
相似国自然基金
模板化共晶聚合合成高分子量序列聚氨基酸
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于祖先序列重构的D-氨基酸解氨酶的新酶设计及分子进化
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
C-末端40个氨基酸插入序列促进细菌脂肪酸代谢调控因子FadR转录效率的机制研究
- 批准号:82003257
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:青年科学基金项目
谷氧还蛋白PsGrx在南极海冰细菌极端生境适应中的功能研究
- 批准号:41876149
- 批准年份:2018
- 资助金额:62.0 万元
- 项目类别:面上项目
氨基酸转运蛋白LAT1调控mTOR信号通路对鼻咽癌放射敏感性的影响及其机制研究
- 批准号:81702687
- 批准年份:2017
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Nanobody toolkit for human coronavirus classification
用于人类冠状病毒分类的纳米抗体工具包
- 批准号:
10218812 - 财政年份:2021
- 资助金额:
$ 74.66万 - 项目类别:
A Metabolic Engineering Strategy to Map Sialyltransferase Glycosites
绘制唾液酸转移酶糖位图的代谢工程策略
- 批准号:
10655503 - 财政年份:2021
- 资助金额:
$ 74.66万 - 项目类别:
A Metabolic Engineering Strategy to Map Sialyltransferase Glycosites
绘制唾液酸转移酶糖位图的代谢工程策略
- 批准号:
10468652 - 财政年份:2021
- 资助金额:
$ 74.66万 - 项目类别:
A Metabolic Engineering Strategy to Map Sialyltransferase Glycosites
绘制唾液酸转移酶糖位图的代谢工程策略
- 批准号:
10313364 - 财政年份:2021
- 资助金额:
$ 74.66万 - 项目类别:
Nanobody toolkit for human coronavirus classification
用于人类冠状病毒分类的纳米抗体工具包
- 批准号:
10375561 - 财政年份:2021
- 资助金额:
$ 74.66万 - 项目类别: