SCH: Artificial Intelligence enabled multi-modal sensor platform for at-home health monitoring of patients
SCH:人工智能支持的多模式传感器平台,用于患者的家庭健康监测
基本信息
- 批准号:10816667
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-01 至 2027-07-31
- 项目状态:未结题
- 来源:
- 关键词:Acute Renal Failure with Renal Papillary NecrosisAddressAdultAlgorithmsArizonaArtificial IntelligenceBiological AssayBiological MarkersCardiovascular systemCaringCellular PhoneClinicClinicalClinical TrialsClinics and HospitalsCommunicationComputer Vision SystemsComputerized Medical RecordComputersCreatinineDataData SetDetectionDevelopmentDevicesDiagnosisDiseaseEarly DiagnosisElectrical EngineeringElectrocardiogramEnergy consumptionEngineeringEvaluationEventFatigueFutureGenderGoalsGuidelinesHealthHealth StatusHealthcareHomeHospitalsImageInkInstitutionIntelligenceLeadLearningMedicalMedical RecordsMicrofluidicsMissionModelingMonitorNational Institute of Biomedical Imaging and BioengineeringObservational StudyParticipantPatient MonitoringPatient-Focused OutcomesPatientsPreventionPrintingProcessProtocols documentationPublic Health InformaticsReaderRecordsRecurrenceResearchRiskRisk AssessmentRunningSamplingScientistSignal TransductionSkinStrategic visionSurvivorsSystemTechnical ExpertiseTechnologyTrainingTravelUreaUrineUrologistVisitWorkacute careage stratificationanalogartificial intelligence algorithmcare burdencohortcomorbiditydeep learningdemographicsdesigndetection assaydetection platformencryptionflexibilityfollow-uphealth managementhigh riskhospital readmissionimprovedinnovationinsightmobile applicationmodel designmortalitymultimodalitynext generationnon-invasive systempatient health informationpersonalized predictionspoint of carepoor health outcomereadmission ratesrisk predictionsensorsensor technologyskin patchsmartphone applicationtransmission processurinaryvolunteerwearable devicewireless
项目摘要
Acute kidney injury (AKI) is a commonly encountered medical problem that is associated with poor health
outcomes in survivors, including increased mortality and re-admission to the hospital. Despite their high-risk
status, only a small fraction (<10%) of patients receive specialized nephrologist follow-up after AKI episode.
The low rate of follow-up care is due to lack of clear guidelines as well as reluctance on part of patients due
to several reasons such as hospital fatigue, long travel times and unwillingness to add more doctors to the
care team. To address the gap in care for AKI survivors, we propose an artificial intelligence (AI) enabled,
MUlti-modal SEnsor (MUSE) platform for at-home use that can monitor patient health automatically, perform
risk assessment for AKI recurrence, and alert the patient to seek specialized care. MUSE comprises of – 1)
a colorimetric dipstick for capturing concentration of bio-markers (creatinine, urea, pH and lactate) in urine;
2) a near-field communication (NFC) powered stretchable, battery-less, single-lead electrocardiogram (ECG)
skin patch that records ECG since cardiovascular complications is a strong predictor for AKI recurrence; 3)
an AI-enabled mobile application that acquires sensor data (from urine sample and ECG) and runs an on-device deep learning fusion AI model to combine sensor data and patient medical record (past co-morbidities
and demographics) for precision and personalized predictions. We will harness capabilities of smartphone
for several key tasks - a) capture images of the dipstick sensor with built-in camera; b) act as NFC reader
for ECG patch; c) run the computer vision and AI algorithms natively on-board without requiring network
connection, and encrypt patient data locally. The AI model will be trained and validated on a large
retrospective dataset collected from patients at Mayo Clinic Hospital, and the sensor system functionality will
be validated with an observational study on 20 adult participants (10 healthy and 10 AKI patients) at Mayo.
The proposed research has the potential to drive innovations in producing the next generation of intelligent
wearables that performs fusion of multi-modal sensor data and EMR for early detection of underlying health
issues with high accuracy. A successful realization of the proposal aims will pave the way for a future, large-scale clinical trial with our sensor platform.
急性肾损伤 (AKI) 是一种常见的医疗问题,与健康状况不佳有关
幸存者的结果,包括死亡率增加和再次入院,尽管他们的风险很高。
状态,只有一小部分(<10%)患者在 AKI 发作后接受专门的肾病专家随访。
随访率低的原因是缺乏明确的指导方针以及部分患者因自身原因不愿意接受随访。
由于医院疲劳、出行时间长以及不愿增加更多医生等多种原因
为了解决 AKI 幸存者护理方面的差距,我们提出了一个启用人工智能 (AI) 的团队。
适合家庭使用的多模态 SEnsor (MUSE) 平台,可以自动监测患者健康状况、执行
AKI 复发的风险评估,并提醒患者寻求专门护理,包括 – 1)
用于捕获尿液中生物标志物(肌酐、尿素、pH 值和乳酸)浓度的比色试纸;
2) 近场通信 (NFC) 供电的可伸缩、无电池、单导联心电图 (ECG)
记录心电图的皮肤贴片,因为心血管并发症是 AKI 复发的有力预测因素 3)
一款支持人工智能的移动应用程序,可获取传感器数据(来自尿液样本和心电图)并运行设备上的深度学习融合人工智能模型,以将传感器数据和患者医疗记录(过去的合并症)结合起来
和人口统计)进行精确和个性化的预测。我们将利用智能手机的功能。
用于多项关键任务 - a) 使用内置摄像头捕获量油尺传感器的图像 b) 充当 NFC 读取器
用于心电图补丁;c) 无需网络即可在机上本地运行计算机视觉和人工智能算法
连接,并在本地加密患者数据。人工智能模型将在大规模上进行训练和验证。
从梅奥诊所医院的患者收集的回顾性数据集,传感器系统功能将
通过 Mayo 的 20 名成年参与者(10 名健康患者和 10 名 AKI 患者)的观察性研究进行验证。
拟议的研究有可能推动下一代智能产品的创新
融合多模式传感器数据和 EMR 的可穿戴设备,以便及早检测潜在健康状况
成功实现该提案的目标将为未来使用我们的传感器平台进行大规模临床试验铺平道路。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Imon Banerjee其他文献
Imon Banerjee的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Imon Banerjee', 18)}}的其他基金
Flexible NLP toolkit for automatic curation of outcomes for breast cancer patients
灵活的 NLP 工具包,用于自动治疗乳腺癌患者的结果
- 批准号:
10675009 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Flexible NLP toolkit for automatic curation of outcomes for breast cancer patients
灵活的 NLP 工具包,用于自动治疗乳腺癌患者的结果
- 批准号:
10420233 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
TCIA Sustainment and Scalability - Platforms for Quantitative Imaging Informatics in Precision Medicine
TCIA 持续性和可扩展性 - 精准医学中的定量成像信息学平台
- 批准号:
10013134 - 财政年份:2017
- 资助金额:
$ 30万 - 项目类别:
TCIA Sustainment and Scalability - Platforms for Quantitative Imaging Informatics in Precision Medicine
TCIA 持续性和可扩展性 - 精准医学中的定量成像信息学平台
- 批准号:
9753190 - 财政年份:2017
- 资助金额:
$ 30万 - 项目类别:
TCIA Sustainment and Scalability - Platforms for Quantitative Imaging Informatics in Precision Medicine
TCIA 持续性和可扩展性 - 精准医学中的定量成像信息学平台
- 批准号:
10227670 - 财政年份:2017
- 资助金额:
$ 30万 - 项目类别:
相似国自然基金
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
A Randomized Clinical Trial of the Safety and FeasibiLity of Metformin as a Treatment for sepsis induced AKI (LiMiT AKI)
二甲双胍治疗脓毒症引起的 AKI (LiMiT AKI) 的安全性和可行性的随机临床试验
- 批准号:
10656829 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Spatiotemporal regulation of polyploidy in zebrafish cardiac tissue regeneration
斑马鱼心脏组织再生中多倍体的时空调控
- 批准号:
10736051 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Acute Kidney Injury in Children with Chronic Kidney Disease
慢性肾病儿童的急性肾损伤
- 批准号:
10638267 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Developing a Precision Medicine Approach to Pediatric Sepsis-Associated Acute Kidney Injury: Identification of Unique Subphenotypes and Strategies for Bedside Implementation
开发针对小儿脓毒症相关急性肾损伤的精准医学方法:识别独特的亚表型和临床实施策略
- 批准号:
10721391 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Elucidating the Nexus Between Urinary Tract Infection and Diabetes
阐明尿路感染与糖尿病之间的关系
- 批准号:
10527498 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别: