Contrasting biotic and abiotic drivers of adaptive evolution in a host-pathogen conflict
宿主与病原体冲突中适应性进化的生物和非生物驱动因素对比
基本信息
- 批准号:10361186
- 负责人:
- 金额:$ 3.23万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-04-01 至 2022-09-20
- 项目状态:已结题
- 来源:
- 关键词:AddressAffectAllelesBiologicalBiological ModelsCapsidCellsCommunicable DiseasesCommunitiesComplexConflict (Psychology)DataDiseaseDissectionDouble Stranded RNA VirusElementsEnvironmentEukaryotaEvolutionExperimental DesignsFoundationsGenerationsGenesGeneticGenomeGenomicsGenotypeHealthHost DefenseHost resistanceHumanHuman GenomeImmunityKiller CellsLearningLifeMaintenanceMalignant NeoplasmsMetabolicMicrobeModelingMolecularMutationNatural ImmunityOrganismOther GeneticsOutcomeParasitesPhenotypePlasmidsPolymerasePopulationPrevalenceProcessProductionProteinsRNA VirusesRecurrenceResearchResearch ProposalsResistanceRouteSaccharomyces cerevisiaeSaccharomycetalesSeedsSelfish GenesShapesStructureSystemTestingTherapeuticTimeToxic Environmental SubstancesToxinViralViral GenomeVirusWorkYeastsacquired immunityaddictionalpha Toxinantagonistantitoxinarms racecancer cellcell killingcostexperimental studyfitnessgenetic varianthuman microbiotainnovationkiller factornovelparasitismpathogenpressuretheoriestoolvirus genetics
项目摘要
Project Summary/Abstract
To be successful, organisms must adapt to both abiotic (e.g. environmental pressures) as well as biotic
(e.g. parasites) selection pressures. Although both of these pressures can drive evolutionary innovation, theory
predicts that antagonistic relationships may drive recurrent episodes of adaptation. Dissecting these selective
pressures has implications for understanding treatment of both human infectious disease and cancers, where
both pathogens and clonally dividing malignant cells are adapting to both host immunity (biotic) and
environmental (abiotic) therapeutics. Additionally, the human microbiota is a complex and dynamic community
containing competing microbes in the context of both host immunity and gut environment. These complex co-
evolution scenarios are challenging to study and disentangling the respective contributions of various selective
pressures and fitness tradeoffs can be confounding. I propose to use RNA viruses of yeast as a model system
to study the evolutionary consequences of both abiotic and biotic selective pressures of genome evolution in
the presence of genetic conflict. RNA viruses of yeasts encode a “Killer” toxin-antitoxin addiction system, which
protects virus-bearing Killer cells but kills virus-lacking sensitive cells. As a result, these RNA viruses can be
maintained in host populations despite imposing a metabolic cost to their host. In my research proposal, I will
study adaptation in the face of both abiotic (toxin) and biotic (virus) selective pressures. Killer itself
requires multiple viral genomes for toxin production as well as host cellular components. With sensitive cells in
the environment, this system is a four-party genetic conflict, with competing fitness tradeoffs. In spite of this
complexity, budding yeast is one of the best-supported model eukaryote systems with many genetic and
molecular tools. This makes this model system supremely experimentally tractable, even while maintaining the
biological complexity of a naturally occurring system.
I will identify beneficial mutations that arise in populations of competing killer and sensitive cells (Aim
1), in sensitive cells that evolve resistance to toxins in the absence of virus (Aim 2), and determine which
genomes adapt to regain competitive fitness in a molecular arms race (Aim 3). Together, these aims will
uncover how intricate biotic systems co-evolve and constrain one another and reveal the evolutionary
dynamics imposed by antagonistic coevolution, versus abiotic adaptation. Understanding how genomes
evolve, and specifically how genetic conflict (antagonistic co-evolution) drives adaptation, is fundamental for
understanding and treating many processes that shape and drive disease. By exploring host-parasite
coevolution from first principles, we can develop a foundation towards understanding the impact of these
processes on human health and disease. This proposed work will benefit many fields by experimentally
addressing fundamental questions about how biotic and abiotic selection drives and constrains evolutionary
outcomes.
项目概要/摘要
为了成功,生物体必须适应非生物(例如环境压力)和生物
(例如寄生虫)选择压力虽然这两种压力都可以推动进化创新,但理论。
预测对抗关系可能会导致反复出现的选择性适应。
压力对于理解人类传染病和癌症的治疗具有影响,其中
病原体和克隆分裂的恶性细胞都在适应宿主免疫(生物)和
此外,人类微生物群是一个复杂且动态的群落。
在宿主免疫和肠道环境中含有竞争性微生物。
进化情景的研究和理清各种选择性的各自贡献具有挑战性
我建议使用酵母 RNA 病毒作为模型系统。
研究基因组进化的非生物和生物选择压力的进化后果
酵母RNA病毒的遗传冲突编码了一种“杀手”毒素-抗毒素成瘾系统。
保护携带病毒的杀伤细胞,但杀死缺乏病毒的敏感细胞。因此,这些 RNA 病毒可以被杀死。
尽管给宿主带来了代谢成本,但在我的研究提案中,我将维持在宿主群体中。
研究杀手本身面对非生物(毒素)和生物(病毒)选择性压力时的适应。
需要多个病毒基因组来产生毒素以及宿主细胞成分。
尽管与环境有关,但该系统是一个四方遗传冲突,具有相互竞争的适应性权衡。
由于复杂性,芽殖酵母是支持最好的真核生物模型系统之一,具有许多遗传和
这使得该模型系统在实验上极其容易处理,即使在保持
自然发生系统的生物复杂性。
我将识别竞争性杀伤细胞和敏感细胞群体中出现的有益突变(目标
1),在没有病毒的情况下进化出对毒素的抵抗力的敏感细胞(目标2),并确定哪些
基因组适应以在分子军备竞赛中恢复竞争能力(目标 3)。
揭示复杂的生物系统如何共同进化和相互制约,并揭示进化过程
对抗性共同进化所施加的动力学,与了解基因组如何适应。
进化,特别是遗传冲突(对抗性共同进化)如何驱动适应,是生物进化的基础。
通过探索宿主寄生虫来了解和治疗许多形成和驱动疾病的过程。
从第一原理开始共同进化,我们可以为理解这些影响奠定基础
这项拟议的工作将通过实验使许多领域受益。
解决有关生物和非生物选择如何驱动和限制进化的基本问题
结果。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Paths to adaptation under fluctuating nitrogen starvation: The spectrum of adaptive mutations in Saccharomyces cerevisiae is shaped by retrotransposons and microhomology-mediated recombination.
波动氮饥饿下的适应途径:酿酒酵母的适应性突变谱是由逆转录转座子和微同源介导的重组形成的。
- DOI:
- 发表时间:2023-05
- 期刊:
- 影响因子:4.5
- 作者:Hays, Michelle;Schwartz, Katja;Schmidtke, Danica T;Aggeli, Dimitra;Sherlock, Gavin
- 通讯作者:Sherlock, Gavin
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michelle Hays其他文献
Michelle Hays的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michelle Hays', 18)}}的其他基金
Contrasting biotic and abiotic drivers of adaptive evolution in a host-pathogen conflict
宿主与病原体冲突中适应性进化的生物和非生物驱动因素对比
- 批准号:
10230445 - 财政年份:2021
- 资助金额:
$ 3.23万 - 项目类别:
相似国自然基金
KIR3DL1等位基因启动子序列变异影响其差异表达的分子机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
NUP205双等位基因突变影响纤毛发生而致内脏转位合并先天性心脏病的机理研究
- 批准号:
- 批准年份:2021
- 资助金额:54 万元
- 项目类别:面上项目
全基因组范围内揭示杂交肉兔等位基因特异性表达模式对杂种优势遗传基础的影响
- 批准号:32102530
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
等位基因不平衡表达对采后香蕉果实后熟与品质形成的影响
- 批准号:31972471
- 批准年份:2019
- 资助金额:57 万元
- 项目类别:面上项目
高温影响水稻不同Wx等位基因表达及直链淀粉含量的分子机制研究
- 批准号:31500972
- 批准年份:2015
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Development of a SYF2 antisense oligonucleotide treatment for ALS and FTD
开发治疗 ALS 和 FTD 的 SYF2 反义寡核苷酸
- 批准号:
10547625 - 财政年份:2023
- 资助金额:
$ 3.23万 - 项目类别:
Integrative genomic and functional genomic studies to connect variant to function for CAD GWAS loci
整合基因组和功能基因组研究,将 CAD GWAS 位点的变异与功能联系起来
- 批准号:
10639274 - 财政年份:2023
- 资助金额:
$ 3.23万 - 项目类别:
Single cell transcriptomics of nerves that lack Remak bundles
缺乏 Remak 束的神经的单细胞转录组学
- 批准号:
10649087 - 财政年份:2023
- 资助金额:
$ 3.23万 - 项目类别:
Sex, Physiological State, and Genetic Background Dependent Molecular Characterization of CircuitsGoverning Parental Behavior
控制父母行为的回路的性别、生理状态和遗传背景依赖性分子特征
- 批准号:
10661884 - 财政年份:2023
- 资助金额:
$ 3.23万 - 项目类别: