Targeting the IGF-1/insulin signaling pathway to treat mtDNA disease
靶向IGF-1/胰岛素信号通路治疗线粒体DNA疾病
基本信息
- 批准号:9765341
- 负责人:
- 金额:$ 29.98万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-08-01 至 2021-07-31
- 项目状态:已结题
- 来源:
- 关键词:ATP Synthesis PathwayAdultAffectAgingAllelesAllyAnimal ModelApoptosisAutophagocytosisBiological ProcessBiologyBlindnessCRISPR/Cas technologyCaenorhabditis elegansCellsChildCommunitiesConsumptionDNA polymerase gammaDataDiseaseEnzymesEtiologyFRAP1 geneFunctional disorderGenesGeneticGenetic EngineeringGenomeGoalsHandHealthHumanInheritedInsulin Signaling PathwayInsulin-Like Growth Factor ILibrariesLongevityMammalsMedicineMicroscopyMitochondriaMitochondrial DNAMitochondrial DiseasesMitochondrial ProteinsModelingMolecularMolecular BiologyMusMuscle functionMuscular AtrophyMutationMyopathyNematodaNerve DegenerationOrganellesOrganismPathologyPathway interactionsPatientsPharmaceutical PreparationsPlayPositioning AttributeProblem SolvingProductionProtein BiosynthesisProteinsQuality ControlRNA InterferenceRNA interference screenRespirationRoleSeveritiesSignal TransductionTestingTherapeuticTimeTubular formationage relatedcombatdeafnessdesignexperimental studyflexibilityfollow-upinsightinsulin signalingmitochondrial DNA mutationmitochondrial dysfunctionmitochondrial genomemouse modelmutantneuromuscularnovelpreventprogramsreduce symptomsresponsetherapeutic evaluationtrendtumor progression
项目摘要
ABSTRACT
Genetic instability of the mitochondrial genome (mtDNA) plays an important role in human aging and disease.
For example, mtDNA instability causes blindness, deafness, myopathy and severe encephalomyopathy in
children, and contributes to muscle wasting, cancer progression, and neurodegeneration in aging adults. To
this day though, no child has ever been cured or successfully treated for an inherited mtDNA disease, nor does
a treatment exist for the mtDNA component of age-related diseases. To successfully design a therapeutic
strategy, it will be important to identify molecular mechanisms that can either increase or decrease the
pathology that is caused by mtDNA instability. We may then manipulate these pathways with drugs to prevent
or delay these diseases. Identifying these pathways requires a flexible animal model that is well suited for
“discovery experiments”; therefore, we created a new animal model of mtDNA instability in the nematode C.
elegans. Using CRISPR/Cas9 technology, we created an error prone allele of DNA polymerase gamma (polg-
1D207A), the enzyme that replicates the mitochondrial genome. Worms that carry this allele display an elevated
rate of mtDNA mutation and depletion, two types of genetic instability that cause mtDNA disease in humans.
Because of this genetic instability, polg-1D207A worms suffer from an age-related decline in mitochondrial
respiration and muscle function, mimicking the pathology seen in human patients. We propose to screen these
worms by RNAi to identify genes that can either increase or decrease the severity of mtDNA disease. With this
strategy, we have already discovered that IGF-1/insulin signaling, mitochondrial protein quality control,
mitochondrial dynamics, mTor signaling, autophagy and apoptosis, all control the severity of mtDNA disease in
worms. The strongest modulator of mtDNA disease that we identified thus far, is the IGF-1/insulin signaling
pathway. It has long been known that reduced IGF-1/insulin signaling has beneficial effects for the overall
health of organisms; however, we have now identified a discrete set of diseases for which reduced IIS activity
may have a direct therapeutic application. Since this pathway is well-understood, and numerous drugs and
genetic mutants are available for experimentation, we are in a unique position to rapidly transform these initial
observations into a comprehensive program that has immediate translational relevance. To initiate this
program, we propose to dissect the molecular mechanisms by which reduced IGF-1/insulin signaling rescues
worms from mtDNA disease. These experiments will provide deep insight into the etiology of mtDNA disease
and demonstrate that the IIS pathway modulates mtDNA disease by numerous mechanisms, at multiple levels
of organization. In addition, we will test the therapeutic potential of our findings by investigating whether
reduced IIS activity can ameliorate mtDNA disease in mice as well. We anticipate that these experiments will
demonstrate that reduced IGF-1/insulin signaling has broad beneficial effects for all forms mtDNA disease, and
will thus be a powerful ally in our battle against mitochondrial disorders.
抽象的
线粒体基因组(mtDNA)的遗传不稳定性在人类衰老和疾病中发挥着重要作用。
例如,线粒体DNA不稳定会导致失明、耳聋、肌病和严重的脑肌病。
儿童,并导致老年人的肌肉萎缩、癌症进展和神经退行性变。
但时至今日,还没有任何儿童的遗传性线粒体 DNA 疾病被治愈或成功治疗,也没有
存在一种针对年龄相关疾病的 mtDNA 成分的治疗方法 成功设计一种治疗方法。
战略,重要的是确定可以增加或减少的分子机制
然后我们可以用药物操纵这些途径来预防由 mtDNA 不稳定引起的病理。
或延迟这些疾病的识别需要一个非常适合的灵活的动物模型。
“发现实验”;因此,我们创建了一种新的线虫线粒体DNA不稳定性动物模型。
使用 CRISPR/Cas9 技术,我们创建了 DNA 聚合酶 γ (polg-) 的易错等位基因。
1D207A),携带该等位基因的复制线粒体基因组的酶表现出升高。
mtDNA 突变和耗竭率,这是导致人类 mtDNA 疾病的两种遗传不稳定性。
由于这种遗传不稳定性,polg-1D207A 线虫会遭受与年龄相关的线粒体衰退。
呼吸和肌肉功能,模仿人类患者的病理学,我们建议对其进行筛查。
通过 RNAi 来识别线虫,以识别可以增加或减少 mtDNA 疾病严重程度的基因。
策略,我们已经发现 IGF-1/胰岛素信号传导、线粒体蛋白质量控制、
线粒体动力学、mTor 信号传导、自噬和细胞凋亡都控制着 mtDNA 疾病的严重程度
迄今为止,我们发现的最强的 mtDNA 疾病调节剂是 IGF-1/胰岛素信号传导。
人们早就知道 IGF-1/胰岛素信号传导的减少对整体有有益的影响。
生物体的健康;然而,我们现在已经确定了一组离散的 IIS 活性降低的疾病
由于该途径已被充分了解,并且有许多药物和药物,因此可能具有直接的治疗应用。
基因突变体可用于实验,我们处于独特的地位,可以快速转变这些初始突变体
将观察结果纳入具有直接转化相关性的综合计划中以启动此项目。
计划中,我们建议剖析减少 IGF-1/胰岛素信号传导的分子机制
这些实验将深入了解线粒体DNA疾病的病因学。
并证明 IIS 通路通过多种机制在多个水平上调节 mtDNA 疾病
此外,我们将通过调查是否可以测试我们的研究结果的治疗潜力。
减少 IIS 活性也可以改善小鼠的 mtDNA 疾病,我们预计这些实验也能改善这种情况。
证明减少 IGF-1/胰岛素信号对所有形式的 mtDNA 疾病具有广泛的有益作用,并且
因此,它将成为我们对抗线粒体疾病的强大盟友。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Marc Vermulst其他文献
Marc Vermulst的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Marc Vermulst', 18)}}的其他基金
相似国自然基金
成人免疫性血小板减少症(ITP)中血小板因子4(PF4)通过调节CD4+T淋巴细胞糖酵解水平影响Th17/Treg平衡的病理机制研究
- 批准号:82370133
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
依恋相关情景模拟对成人依恋安全感的影响及机制
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
生活方式及遗传背景对成人不同生命阶段寿命及死亡的影响及机制的队列研究
- 批准号:
- 批准年份:2021
- 资助金额:56 万元
- 项目类别:面上项目
成人与儿童结核病发展的综合研究:细菌菌株和周围微生物组的影响
- 批准号:81961138012
- 批准年份:2019
- 资助金额:100 万元
- 项目类别:国际(地区)合作与交流项目
统计学习影响成人汉语二语学习的认知神经机制
- 批准号:31900778
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Adenylate Kinase 2 Deficiency and the Failure of Myelopoiesis
腺苷酸激酶 2 缺乏和骨髓生成失败
- 批准号:
10906528 - 财政年份:2023
- 资助金额:
$ 29.98万 - 项目类别:
Improving sarcopenia by targeting mitochondria
通过靶向线粒体改善肌肉减少症
- 批准号:
10736713 - 财政年份:2023
- 资助金额:
$ 29.98万 - 项目类别:
A novel mechanism of mitochondrial protein turnover in Complex I deficient mitochondrial cardiomyopathy
复合物 I 缺陷型线粒体心肌病中线粒体蛋白周转的新机制
- 批准号:
10537993 - 财政年份:2022
- 资助金额:
$ 29.98万 - 项目类别:
Adenylate Kinase 2 Deficiency and the Failure of Myelopoiesis
腺苷酸激酶 2 缺乏和骨髓生成失败
- 批准号:
10446518 - 财政年份:2022
- 资助金额:
$ 29.98万 - 项目类别:
Acylations: a novel pathway in the response to mitochondrial energy dysfunction
酰化:应对线粒体能量功能障碍的新途径
- 批准号:
10543478 - 财政年份:2022
- 资助金额:
$ 29.98万 - 项目类别: