A novel mechanism of mitochondrial protein turnover in Complex I deficient mitochondrial cardiomyopathy

复合物 I 缺陷型线粒体心肌病中线粒体蛋白周转的新机制

基本信息

  • 批准号:
    10537993
  • 负责人:
  • 金额:
    $ 3.72万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-09-30 至 2027-09-29
  • 项目状态:
    未结题

项目摘要

PROJECT SUMMARY Mitochondria are an important source of reactive oxygen species (ROS). Once thought of inherently bad as it can cause oxidative damage, physiological ROS production is an important signaling molecule. Complex I of the mitochondria is an important source of ROS production and dysfunctional Complex I has been implicated in both mitochondrial disease and in adult-onset metabolic, neurodegenerative, cancer, and cardiac diseases. In fact, Complex I dysfunction is the most common inborn error of metabolism manifests, often resulting in pediatric mitochondrial cardiomyopathies. Our lab has been studying a mouse model of mitochondrial cardiomyopathies to discover mechanisms preserving bioenergetic homeostasis during Complex I impairment. In studying the mitochondrial calcium uniporter (MCU), an important regulator of ATP synthesis, during Complex I dysfunction, we identified a novel form of ROS-dependent protein regulation. We found that under normal circumstances, MCU transiently interacts with Complex I, and physiological ROS production in Complex I leads to MCU turnover. However, during Complex I dysfunction, the Complex I-MCU interaction is abolished, MCU lifespan increases, and this increased lifespan helps preserve mitochondrial bioenergetic homeostasis. We term this mechanism Complex I-induced protein turnover (CLIPT), and hypothesize that CLIPT is a more widespread phenomenon applicable to other mitochondrial proteins. The objective of this proposal is to determine if CLIPT is a mechanism that enables mitochondrial proteins to compensate for disruptions to cardiac mitochondrial homeostasis. In a preliminary screen, we show that a range of mitochondrial proteins may be similarly subject to CLIPT but for this proposal, I will focus on two proteins of interest: Peroxiredoxin3 (PRDX3) and Hydroxy steroid 17-beta dehydrogenase (HSD17B10). PRDX3 and HSD17B10 are interesting candidates in the setting of ROS-induced protein turnover as they play a role in an antioxidant system and in fatty acid metabolism, respectively. In Aim 1, I will demonstrate how PRDX3 and HSD17B10 is also regulated through CLIPT and in Aim 2, define the clinical relevance to upregulation of PRDX3 and HSD17B10 in the context of Complex I dysfunction. Our results may offer new targets for therapies for cardiac mitochondrial disease.
项目概要 线粒体是活性氧(ROS)的重要来源。曾经认为本质上是坏的 可引起氧化损伤,是生理ROS产生的重要信号分子。复合物 I 的 线粒体是 ROS 产生的重要来源,功能失调的复合物 I 与 线粒体疾病以及成人发病的代谢、神经退行性疾病、癌症和心脏病。在 事实上,复合体 I 功能障碍是最常见的先天性代谢错误,通常会导致 小儿线粒体心肌病。我们的实验室一直在研究线粒体的小鼠模型 心肌病,以发现在复合物 I 损伤期间保持生物能稳态的机制。 在研究线粒体钙单向转运蛋白 (MCU)(ATP 合成的重要调节因子)时, 复杂的 I 功能障碍,我们发现了一种新形式的 ROS 依赖性蛋白质调节。我们发现在下 正常情况下,MCU 会短暂地与 Complex I 相互作用,并产生生理性 ROS 复合体 I 导致 MCU 更新。然而,在 Complex I 功能障碍期间,Complex I-MCU 相互作用是 废除后,MCU 的寿命增加,而这种增加的寿命有助于保护线粒体生物能 体内平衡。我们将这种机制称为复合物 I 诱导的蛋白质周转 (CLIPT),并假设 CLIPT 是一种更广泛的现象,适用于其他线粒体蛋白。 该提案的目的是确定 CLIPT 是否是一种使线粒体蛋白能够 补偿心脏线粒体稳态的破坏。在初步屏幕中,我们表明 一系列线粒体蛋白可能同样受到 CLIPT 的约束,但对于这个提案,我将重点关注两个 感兴趣的蛋白质:过氧化还原蛋白 3 (PRDX3) 和羟基类固醇 17-β 脱氢酶 (HSD17B10)。 PRDX3 和 HSD17B10 在 ROS 诱导的蛋白质更新中是有趣的候选者 分别在抗氧化系统和脂肪酸代谢中发挥作用。在目标 1 中,我将演示如何 PRDX3 和 HSD17B10 也通过 CLIPT 进行调节,在目标 2 中,定义了与以下疾病的临床相关性: 在复合物 I 功能障碍的背景下 PRDX3 和 HSD17B10 的上调。我们的结果可能会提供新的 心脏线粒体疾病的治疗目标。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sandra Hyunjoo Lee其他文献

Sandra Hyunjoo Lee的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sandra Hyunjoo Lee', 18)}}的其他基金

A novel mechanism of mitochondrial protein turnover in Complex I deficient mitochondrial cardiomyopathy
复合物 I 缺陷型线粒体心肌病中线粒体蛋白周转的新机制
  • 批准号:
    10708844
  • 财政年份:
    2022
  • 资助金额:
    $ 3.72万
  • 项目类别:

相似国自然基金

依恋相关情景模拟对成人依恋安全感的影响及机制
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
生活方式及遗传背景对成人不同生命阶段寿命及死亡的影响及机制的队列研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    56 万元
  • 项目类别:
    面上项目
成人与儿童结核病发展的综合研究:细菌菌株和周围微生物组的影响
  • 批准号:
    81961138012
  • 批准年份:
    2019
  • 资助金额:
    100 万元
  • 项目类别:
    国际(地区)合作与交流项目
统计学习影响成人汉语二语学习的认知神经机制
  • 批准号:
    31900778
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Adenylate Kinase 2 Deficiency and the Failure of Myelopoiesis
腺苷酸激酶 2 缺乏和骨髓生成失败
  • 批准号:
    10906528
  • 财政年份:
    2023
  • 资助金额:
    $ 3.72万
  • 项目类别:
Improving sarcopenia by targeting mitochondria
通过靶向线粒体改善肌肉减少症
  • 批准号:
    10736713
  • 财政年份:
    2023
  • 资助金额:
    $ 3.72万
  • 项目类别:
Adenylate Kinase 2 Deficiency and the Failure of Myelopoiesis
腺苷酸激酶 2 缺乏和骨髓生成失败
  • 批准号:
    10446518
  • 财政年份:
    2022
  • 资助金额:
    $ 3.72万
  • 项目类别:
Acylations: a novel pathway in the response to mitochondrial energy dysfunction
酰化:应对线粒体能量功能障碍的新途径
  • 批准号:
    10543478
  • 财政年份:
    2022
  • 资助金额:
    $ 3.72万
  • 项目类别:
A novel mechanism of mitochondrial protein turnover in Complex I deficient mitochondrial cardiomyopathy
复合物 I 缺陷型线粒体心肌病中线粒体蛋白周转的新机制
  • 批准号:
    10708844
  • 财政年份:
    2022
  • 资助金额:
    $ 3.72万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了