Knotless Soft Tissue Augments for Improving Arthroscopic Rotator Cuff Repair Biomechanics
无结软组织增强物可改善关节镜下肩袖修复生物力学
基本信息
- 批准号:10546104
- 负责人:
- 金额:$ 24.77万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-23 至 2024-03-31
- 项目状态:已结题
- 来源:
- 关键词:3-Dimensional3D PrintBehaviorBiomechanicsBiomedical EngineeringBiopolymersBoatCadaverCaringCheeseCicatrixClinicalComplexConsumptionDataEngineeringEnsureFailureFiberHeadHealthHerniaHumanImplantInjuryJoint repairKnowledgeMechanicsMedicalMedical DeviceMethodsMissionNational Institute of Arthritis and Musculoskeletal and Skin DiseasesNatureOccupationsOperative Surgical ProceduresPainPatientsPerformancePeriodicityPersistent painPhasePolymersPreclinical TestingProceduresPropertyPsychological reinforcementResearchRotator CuffSmall Business Innovation Research GrantSurgeonSurgical ManagementSurgical suturesTendon structureTestingTextilesTimeTissue EngineeringTissuesWorkbasebiomaterial compatibilitybiomechanical testboneclinical practicecost effectivedesigndisabilityfield studyhealingimprovedinnovationinnovative technologiesmechanical loadnovelolder patientpreventprospectiverepairedrotator cuff injuryscaffoldsoft tissuestandard of caresuccesssupraspinatus muscletissue repairultra-high molecular weight polyethylene
项目摘要
Knotless Soft Tissue Augments for Improving Arthroscopic Rotator Cuff Repair Biomechanics
Load sharing and reinforcing soft tissue with knotless suture augments present a disruptive and
innovative technology to managing the surgical care of rotator cuff injuries and prospectively other injuries
where suture pull-through can have catastrophic effects. This phase I SBIR proposal endeavors to develop a
new field of study and redefine clinical practice via innovative soft tissue augment (STA) implants to improve
suture load distribution and tissue healing in rotator cuff repair (RCR) and related surgeries. The significance of
this project is medical engineering of strong, reinforcing, resorbable polymeric implants that will allow for
studying joint repair stability, understanding the causes/mechanisms of RCR failure, and ultimately preventing
these failures via a commercial product. Central to the NIAMS mission, tendon re-tear following surgical RCR
occurs in as high as 20-45% or more of primary repairs. This failure rate is an unacceptable fact, given that
800,000 RCR procedures are performed annually in the U.S. alone. In addition, rotator cuff injuries do not heal
well on their own, cause limited mobility, persistent pain, and impact return to activity.
Current RCR surgical strategies involve extensive use of sutures passed arthroscopically to provide
tissue approximation. Unfortunately, suture-only repair commonly fails and instead leads to mechanically weak
scar tissue formation, prone to subsequent failure, pain, and disability. The tendon-to-suture interface is
believed to be the most common RCR failure mode. It is hypothesized that RCR failure occurs via gap
formation at the enthesis, primarily due to elongation or suture cut-through at the suture-tendon interface. STAs
we are engineering will distribute and share the mechanical load and prevent suture-to-tendon failure as an
innovative approach to significantly improve RCR. Hypothesis: If Soft Tissue Augments (STAs) improve tissue
repair biomechanics by reinforcing standard suture-based rotator cuff repair, then type 2 retears will be
significantly reduced.
Aim 1: To determine and optimize soft tissue augment biomechanical properties. Approach: 3D
printed tendon augments implants will be produced from PDO and UHMWPE from the two STA designs
(round and tab shaped) for surgeon assessment and simulated use. The tendon suture augments will be tested in
cadavers for validating arthroscopic delivery. In addition, STAs surgically placed on the repaired tendons will
be tested for biomechanical performance in pull-to-failure and cyclic testing relative to repair with only sutures
(the standard of care).
Aim 2: To determine soft tissue augment stability and biocompatibility. Approach: STA will also
be assessed for biocompatibility per ISO 10993-6. The STA implant stability will also be assessed per ASTM
1635-16 standard testing to determine the resorption rate of the soft tissue augments.
无结软组织增强型用于改善关节镜肩袖修复生物力学
用无结缝合线增大的负载共享和加固软组织具有破坏性和
创新技术来管理肩袖受伤的手术护理和前瞻性伤害
缝合式拉的地方会产生灾难性的影响。这阶段我的提议努力开发
通过创新的软组织增强(STA)植入物改进的新研究和重新定义临床实践
肩袖修复(RCR)和相关手术中的缝合负荷分布和组织愈合。的意义
该项目是强大,增强,可吸收的聚合物植入物的医学工程,可以允许
研究关节维修稳定性,了解RCR失败的原因/机制,并最终阻止
这些通过商业产品失败。 Niams任务的中心,手术RCR后肌腱重新训练
出现高达20-45%或更多的主要维修。鉴于此失败率是一个不可接受的事实
仅在美国,每年一次执行800,000个RCR程序。此外,肩袖受伤无法治愈
依靠自己,会导致有限的流动性,持续性疼痛以及影响重返活动。
当前的RCR手术策略涉及广泛使用通过关节镜通过的缝合线以提供
组织近似。不幸的是,纯缝合修理通常会失败,而是机械弱
疤痕组织的形成,容易发生后续失败,疼痛和残疾。肌腱到缝线接口是
认为是最常见的RCR故障模式。假设RCR失败是通过间隙发生的
在缝隙处形成,主要是由于缝合线界面处的伸长或缝合线切割。 Stas
我们的工程将分发和分享机械负载,并防止缝合到螺丝 - 螺旋式失败
创新的方法可显着改善RCR。假设:如果软组织增强(Stas)改善组织
维修生物力学通过加强标准缝合式肩袖修复,然后将2个式播音为
大幅减少。
目标1:确定和优化软组织增强生物力学特性。方法:3D
PDO和UHMWPE将通过两个STA设计生产印刷肌腱增强植入物
(圆形和标签形状)用于外科医生评估和模拟使用。肌腱缝合线的增强将在
用于验证关节镜分娩的尸体。此外,将STA手术放在修复的肌腱上
仅使用缝合线的维修中的拉力到失败和循环测试进行生物力学性能测试
(护理标准)。
目标2:确定软组织增强稳定性和生物相容性。方法:Sta也将
根据ISO 10993-6评估生物相容性。根据ASTM,也将评估STA植入物稳定性
1635-16标准测试以确定软组织增强的吸收率。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael Paul Francis其他文献
Michael Paul Francis的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael Paul Francis', 18)}}的其他基金
Preclinical Evaluation of a Biofabricated Implant for Rotator Cuff Tendon-Enthesis Regeneration
用于肩袖肌腱附着点再生的生物制造植入物的临床前评估
- 批准号:
9907884 - 财政年份:2019
- 资助金额:
$ 24.77万 - 项目类别:
相似国自然基金
基于超早期粘-弹-塑性力学行为的3D打印混凝土结构可建造性与失效机制研究
- 批准号:52378250
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
DLP光固化3D打印陶瓷颗粒—聚合物体系的细观损伤力学行为研究
- 批准号:52372072
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
本征缺陷对3D打印连续碳纤维增强复合材料失效行为的影响机制
- 批准号:52265017
- 批准年份:2022
- 资助金额:33.00 万元
- 项目类别:地区科学基金项目
本征缺陷对3D打印连续碳纤维增强复合材料失效行为的影响机制
- 批准号:
- 批准年份:2022
- 资助金额:33 万元
- 项目类别:地区科学基金项目
3D打印纤维增强水凝胶的力学行为研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Novel Bioprinted Neural Stem Cell-Embedded Hydrogel Matrices for Enhanced Treatment of Glioblastoma
新型生物打印神经干细胞嵌入水凝胶基质,用于增强胶质母细胞瘤的治疗
- 批准号:
10749330 - 财政年份:2023
- 资助金额:
$ 24.77万 - 项目类别:
Uniquely high conversion and mechanically robust composite restorative materials for functionally elevated performance
独特的高转化率和机械坚固的复合修复材料,可提高功能性能
- 批准号:
10646845 - 财政年份:2023
- 资助金额:
$ 24.77万 - 项目类别:
Personalized bioprinting technology for de novo PDL regeneration
用于 PDL 从头再生的个性化生物打印技术
- 批准号:
10667088 - 财政年份:2023
- 资助金额:
$ 24.77万 - 项目类别:
ONIX: A Neural Acquisition System for Unencumbered, Closed-Loop Recordings in Small, Freely Moving Animals
ONIX:一种神经采集系统,用于对小型、自由移动的动物进行无阻碍、闭环记录
- 批准号:
10482182 - 财政年份:2022
- 资助金额:
$ 24.77万 - 项目类别:
Uncovering cell type-specific prefrontal neural mechanisms of visuospatial selective attention in freely behaving mice using a high-throughput touchscreen-based training system
使用基于高通量触摸屏的训练系统揭示自由行为小鼠视觉空间选择性注意的细胞类型特异性前额神经机制
- 批准号:
10652656 - 财政年份:2022
- 资助金额:
$ 24.77万 - 项目类别: